Skip to main content
Log in

Construction of a Turn-off–on Fluorescent System Based On Aggregation Induced Emission of Acetaldehyde Using Carbonized Polymer dots and Tb3+

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

It was the first time to report the aggregation induced emission (AIE) of acetaldehyde (AA) on the surface of carbonized polymer dots (CPDs) with the auxiliary of Tb3+. Based on the AIE of AA, a turn-off–on fluorescence method was established for AA detection using the porous CPDs-Tb3+ system. The one-pot hydrothermal method was used to obtain CPDs, using milk and polyethyleneimine (PEI) as precursors. In the presence of Tb3+, CPDs aggregated immediately and even forming precipitate, and the fluorescence intensity decreased obviously. AA can effectively embed on the surface of CPDs-Tb3+ due to the porous structure. AA displayed obviously blue fluorescence with excitation wavelength at 370 nm (emission peak at 460 nm), while there was no fluorescence peak when excited at 460 nm. In the CPDs-Tb3+ solution, AA exhibits obvious fluorescence enhancement effect (λex 460 nm, λem 545 nm). And then, AA can be determined by the turn-off–on system based on the linear relationship between fluorescence enhancement and the concentration of AA ranging from 0.04 mM to 42.48 mM. The limit of detection (LOD) was 0.02 mM. The turn-off–on system was successfully applied to determine AA in wine samples. The strategy may be exploited to monitor AA in more drinking or foodstuff samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary materials.

References

  1. Aguera E, Sire Y, Mouret JR, Sablayrolles JM, Farines V (2018) Comprehensive study of the evolution of the gas-liquid partitioning of acetaldehyde during wine alcoholic fermentation. J Agric Food Chem 66:6170–6178

    Article  CAS  PubMed  Google Scholar 

  2. Zou W, Ye G, Zhang K (2018) Diversity, Function, and application of clostridium in chinese strong flavor baijiu ecosystem: A review. J Food Sci 83:1193–1199

    Article  CAS  PubMed  Google Scholar 

  3. Lago LO, Nicolli KP, Marques AB, Zini CA, Welke JE (2017) Influence of ripeness and maceration of the grapes on levels of furan and carbonyl compounds in wine-Simultaneous quantitative determination and assessment of the exposure risk to these compounds. Food Chem 230:594–603

    Article  CAS  PubMed  Google Scholar 

  4. Okata H, Hatta W, Iijima K, Asanuma K, Tsuruya A, Asano N, Koike T, Hamada S, Nakayama T, Masamune A, Shimosegawa T (2018) Detection of acetaldehyde in the esophageal tissue among healthy male subjects after ethanol drinking and subsequent l-cysteine intake. Tohoku J Exp Med 244:317–325

    Article  CAS  PubMed  Google Scholar 

  5. Iitani K, Chien PJ, Suzuki T, Toma K, Arakawa T, Iwasaki Y, Mitsubayashi K (2018) Fiber-optic bio-sniffer (biochemical gas sensor) using reverse reaction of alcohol dehydrogenase for exhaled acetaldehyde. ACS Sens 3:425–431

    Article  CAS  PubMed  Google Scholar 

  6. Qin Y, Shin JA, Lee KT (2020) Determination of acetaldehyde, methanol and fusel oils in distilled liquors and sakes by headspace gas chromatography. Food Sci Biotechnol 29:331–337

    Article  CAS  PubMed  Google Scholar 

  7. Shin KS, Lee JH (2019) Acetaldehyde contents and quality characteristics of commercial alcoholic beverages. Food Sci Biotechnol 28:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Y, Zhang S, Lu F, Liu Q, You J (2017) Gas purge-microsyringe extraction coupled with liquid chromatography and fluorescence detection for the determination of aldehydes from fried meat. Food Anal Methods 11:1390–1397

    Article  Google Scholar 

  9. Heit C, Eriksson P, Thompson DC, Charkoftaki G, Fritz KS, Vasiliou V (2016) Quantification of neural ethanol and acetaldehyde using headspace GC-MS. Alcohol Clin Exp Res 40:1825–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li WK, Ding YZ, Feng JT, Ma ZQ (2020) A novel luminescent dual-ligands europium(III) complex prepared for acetaldehyde sensitive detection. Sensor Actuat B 306:127542

  11. Yang C, Li Y, Wang J, He J, Hou H, Li K (2019) Fast and highly selective detection of acetaldehyde in liquor and spirits by forming aggregation-induced emission luminogen. Sensor Actuat B 285:617–624

    Article  CAS  Google Scholar 

  12. Zhang H, Wu S, Xing Z, Wang HB (2021) Turning waste into treasure: chicken eggshell membrane derived fluorescent carbon nanodots for the rapid and sensitive detection of Hg2+ and glutathione. Analyst 146:7250–7256

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Yue Q, Tao L, Zhang C, Li CZ (2018) Fluorometric determination of hydroquinone by using blue emitting N/S/P-codoped carbon dots. Microchim Acta 185:550

    Article  Google Scholar 

  14. Yuan F, Li S, Fan Z, Meng X, Fan L, Yang S (2016) Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today 11:565–586

    Article  CAS  Google Scholar 

  15. Baker SN, Baker GA (2010) Luminescent carbon nanodots: Emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  16. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  PubMed  Google Scholar 

  17. Song Y, Zhu C, Song J, Li H, Du D, Lin Y (2017) Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells. ACS Appl Mater Inter 9:7399–7405

    Article  CAS  Google Scholar 

  18. Li D, Wang J, Ma X (2018) White-light-emitting materials constructed from supramolecular approaches. Adv Opt Mater 6:1800273

    Article  Google Scholar 

  19. Shamsipur M, Barati A, Taherpour AA, Jamshidi M (2018) Resolving the multiple emission centers in carbon dots: From fluorophore molecular states to aromatic domain states and carbon-core states. J Phys Chem Lett 9:4189–4198

    Article  CAS  PubMed  Google Scholar 

  20. Fu M, Ehrat F, Wang Y, Milowska KZ, Reckmeier C, Rogach AL, Stolarczyk JK, Urban AS, Feldmann J (2015) Carbon dots: A unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett 15:6030–6035

    Article  CAS  PubMed  Google Scholar 

  21. Zhu S, Song Y, Shao J, Zhao X, Yang B (2015) Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew Chem Int Ed 54:14626–14637

    Article  CAS  Google Scholar 

  22. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Jin Q, Wu L, Tung C, Tang X (2014) Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angew Chem Int Ed 53:12542–12547

    CAS  Google Scholar 

  24. Li RS, Gao PF, Zhang HZ, Zheng LL, Li CM, Wang J, Li YF, Liu F, Li N, Huang CZ (2017) Chiral nanoprobes for targeting and long-term imaging of the Golgi apparatus. Chem Sci 8:6829–6835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang L, Jiang W, Qiu L, Jiang X, Zuo D, Wang D, Yang L (2015) One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale 7:6104–6113

    Article  CAS  PubMed  Google Scholar 

  26. Zhu Z, Zhai Y, Li Z, Zhu P, Mao S, Zhu C, Du D, Belfiore LA, Tang J, Lin Y (2019) Red carbon dots: Optical property regulations and applications. Mater Today 30:52–79

    Article  CAS  Google Scholar 

  27. Liu ML, Chen BB, Yang T, Wang J, Liu XD, Huang CZ (2017) One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline. Methods Appl Fluoresc 5: 015003.

  28. Chen BB, Liu ML, Zhan L, Li CM, Huang CZ (2018) Terbium(iii) modified fluorescent carbon dots for highly selective and sensitive ratiometry of stringent. Anal Chem 90:4003–4009

    Article  CAS  PubMed  Google Scholar 

  29. Kaur G, Chaudhary M, Jena KC, Singh N (2020) Terbium(iii)-coated carbon quantum dots for the detection of clomipramine through aggregation-induced emission from the analyte. New J Chem 44:10536–10544

    Article  CAS  Google Scholar 

  30. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 1740–1741

  31. Du W, Liu X, Liu L, Lam JWY, Tang BZ (2021) Photoresponsive Polymers with Aggregation-Induced Emission. ACS Appl Polym Mater 3:2290–2309

    Article  CAS  Google Scholar 

  32. Yang S, Wang L, Zuo L, Zhao C, Li H, Ding L (2019) Non-conjugated polymer carbon dots for fluorometric determination of metronidazole. Microchim Acta 186:652

    Article  Google Scholar 

  33. Xia C, Zhu S, Feng T, Yang M, Yang B (2019) Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv Sci 6:1901316

    Article  CAS  Google Scholar 

  34. Xu M, Gao Z, Zhou Q, Lin Y, Lu M, Tang D (2016) Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5’-triphosphate with unmodified gold nanoparticles. Biosens Bioelectron 86:978–984

    Article  CAS  PubMed  Google Scholar 

  35. Dong H, Kuzmanoski A, Gossl DM, Popescu R, Gerthsen D, Feldmann C (2014) Polyol-mediated C-dot formation showing efficient Tb3+/Eu3+ emission. Chem Commun 50:7503–7506

    Article  CAS  Google Scholar 

  36. Rb W, Wz Y, Xy Z (2015) Aggregation-induced emission of non-conjugated poly(amido amine)s: Discovering, luminescent mechanism understanding and bioapplication. Chin J Polym Sci 33:680–687

    Article  Google Scholar 

  37. Song G, Lin Y, Zhu Z, Zheng H, Qiao J, He C, Wang H (2015) Strong fluorescence of poly(N-vinylpyrrolidone) and its oxidized hydrolyzate. Macromol Rapid Comm 36:278–285

    Article  CAS  Google Scholar 

  38. Murad E (1960) The fluorescence of acetaldehyde vapor. J Phys Chem 64:942–945

    Article  CAS  Google Scholar 

  39. Gao WB, Teng ZR, Zheng FY (1997) Studies on the fluorescence properties of acetaldehyde (CH3CHO) water solution. Chin J Atom Mol Phy 14:500–504

    CAS  Google Scholar 

  40. Ling Y, Qu F, Zhou Q, Li T, Gao ZF, Lei JL, Li NB, Luo HQ (2015) Diverse states and properties of polymer nanoparticles and gel formed by polyethyleneimine and aldehydes and analytical applications. Anal Chem 87:8679–8686

    Article  CAS  PubMed  Google Scholar 

  41. Luo Y, Zhang L, Zhang L, Yu B, Wang Y, Zhang W (2019) Multiporous terbium phosphonate coordination polymer microspheres as fluorescent probes for trace anthrax biomarker detection. ACS Appl Mater Inter 11:15998–16005

    Article  CAS  Google Scholar 

  42. Ghica ME, Pauliukaite R, Marchand N, Devic E, Brett CM (2007) An improved biosensor for acetaldehyde determination using a bienzymatic strategy at poly(neutral red) modified carbon film electrodes. Anal Chim Acta 591:80–86

    Article  CAS  PubMed  Google Scholar 

  43. Avramescu A, Noguer T, Avramescu M, Marty J-L (2002) Screen-printed biosensors for the control of wine quality based on lactate and acetaldehyde determination. Anal Chim Acta 458:203–213

    Article  CAS  Google Scholar 

  44. Yang P, Lau C, Liang JY, Lu JZ, Liu X (2007) Zeolite-based cataluminescence sensor for the selective detection of acetaldehyde. Lumin 22:473–479

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported financially by Natural Science Foundation of China (91543206), Graduate Education Quality Improvement Plan of Shandong Province (SDYJG21198), and research foundation of Liaocheng University (318050022 and 318012116).

Author information

Authors and Affiliations

Authors

Contributions

Experimental work done and Manuscript written by Rentian Guan and Qiaoli Yue, Manuscript checked and supervised by Shuai Zhang, Xiaoyu Fan, Xiaodong Shao, Yingying Hu, Tao Liu and Shuhao Wang. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiaoli Yue.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8527 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, R., Zhang, S., Fan, X. et al. Construction of a Turn-off–on Fluorescent System Based On Aggregation Induced Emission of Acetaldehyde Using Carbonized Polymer dots and Tb3+. J Fluoresc 32, 759–770 (2022). https://doi.org/10.1007/s10895-022-02891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02891-9

Keywords

Navigation