Skip to main content
Log in

Influence of Fe(III) on the Fluorescence of Lysozyme: a Facile and Direct Method for Sensitive and Selective Sensing of Fe(III)

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Lysozyme is widely used for the synthesis of nanomaterials (e.g., gold nanoparticle) to fluorescently sense metal ions. However, the effect of metal ions on the fluorescence of lysozyme is not studied yet. Herein, we have explored the interactions of lysozyme with different metal ions to develop a direct sensing platform for Fe(III). It has been observed that the fluorescence of lysozyme was slightly decreased in the presence of Cu(II), Hg(II), As(V), Co(II), Cd(II), Cr(II), Fe(II), Mn(II), Pb(II), and Zn(II), while a significant decrease in the lysozyme fluorescence was observed for Fe(III). The effect of thermal stability on the fluorescence quenching was also studied from 25 to 60 °C. In the present study, the lysozyme sensing probe was able to selectively and accurately detect 0.5–50 ppm of Fe(III) with a LOD of 0.1 ppm (1.8 µM) at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vaid K, Dhiman J, Sarawagi N, Kumar V (2020) Experimental and computational study on the selective interaction of functionalized gold nanoparticles with metal ions: sensing prospects. Langmuir 36:12319–12326

    Article  CAS  Google Scholar 

  2. Singh R, Mehra R, Walia A, Gupta S, Chawla P, Kumar H, Thakur A, Kaushik R, Kumar N (2021) Colorimetric sensing approaches based on silver nanoparticles aggregation for determination of toxic metal ions in water sample: a review. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1873315

    Article  Google Scholar 

  3. Ding R, Cheong YH, Ahamed A, Lisak G (2021) Heavy metals detection with paper-based electrochemical sensors. Anal Chem 93:1880–1888

    Article  CAS  Google Scholar 

  4. Singh K, Kumar V, Kukkar B, Kim KH, Sharma TR (2021) Facile and efficient colorimetric detection of cadmium ions in aqueous systems using green-synthesized gold nanoparticles. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03331-0

    Article  Google Scholar 

  5. Chandirasekar S, You JG, Xue JH, Tseng WL (2019) Synthesis of gold nanocluster-loaded lysozyme nanoparticles for label-free ratiometric fluorescent pH sensing: applications to enzyme–substrate systems and cellular imaging. J Mater Chem B 7:3876–3883

    Article  CAS  Google Scholar 

  6. Omena J, Curioni C, Cople-Rodrigues CDS, Citelli M (2021) The effect of food and nutrients on iron overload: what do we know so far? Eur J Clin Nutr. https://doi.org/10.1038/s41430-021-00887-5

    Article  PubMed  Google Scholar 

  7. Piperno A, Pelucchi S, Mariani R (2020) Inherited iron overload disorders. Transl Gastrointest Cancer 5:25

    Google Scholar 

  8. Nair SSP, Kottam N, Prasanna Kumar SG (2020) Green synthesized luminescent carbon nanodots for the sensing application of Fe3+ ions. J Fluoresc 30:357–363

    Article  CAS  Google Scholar 

  9. Pincher DWM, Bader CA, Hayball JD, Plush SE, Sweetman MJ (2019) Graphene quantum dot embedded hydrogel for dissolved iron sensing. ChemistrySelect 4:9640–9646

    Article  CAS  Google Scholar 

  10. Chaturvedi S, Dave PN (2012) Removal of iron for safe drinking water. Desalination 303:1–11

    Article  CAS  Google Scholar 

  11. Vries D, Bertelkamp C, Kegel FS, Hofs B, Dusseldorp J, Bruins JH, de Vet W, van den Akker B (2017) Iron and manganese removal: recent advances in modelling treatment efficiency by rapid sand filtration. Water Res 109:35–45

    Article  CAS  Google Scholar 

  12. De Berg KC (2019) The Iron (III) thiocyanate reaction: research history and role in chemical analysis. Springer, Berlin

    Book  Google Scholar 

  13. Al-Zuraiji SM, Lukács D, Németh M, Frey K, Benkó T, Illés L, Pap JS (2020) An Iron(III) complex with pincer ligand—catalytic water oxidation through controllable ligand exchange. Reactions 1:16–36

    Article  Google Scholar 

  14. Itagaki H (2000) Fluorescence spectroscopy. Experimental methods in polymer science. Academic Press, San Diego, pp 155–260

    Chapter  Google Scholar 

  15. Zhao Q, Chen S, Zhang L, Huang H (2015) Detection of Fe(iii) and bio-copper in human serum based on fluorescent AuAg nanoclusters. Anal Methods 7:296–300

    Article  CAS  Google Scholar 

  16. Qu K, Wang J, Ren J, Qu X (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of Iron(III) ions and dopamine. Chem—Eur J 19:7243–7249

    Article  CAS  Google Scholar 

  17. Li J, Wang Q, Guo Z, Ma H, Zhang Y, Wang B, Bin D, Wei Q (2016) Highly selective fluorescent chemosensor for detection of Fe3+ based on Fe3O4@ZnO. Sci Rep 6:23558

    Article  CAS  Google Scholar 

  18. Zhu X, Duan Y, Li P, Fan H, Han T, Huang X (2019) A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron(iii), iron(ii), and copper(ii) ions. Anal Methods 11:642–647

    Article  CAS  Google Scholar 

  19. Şenol AM, Onganer Y, Meral K (2017) An unusual “off-on” fluorescence sensor for iron(III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine. Sens Actuators B 239:343–351

    Article  CAS  Google Scholar 

  20. Li L, Liu Z (2017) A colorimetric and fluorescent sensor for iron recognition based on rhodamine derivative. J Fluoresc 27:427–431

    Article  CAS  Google Scholar 

  21. Biswas S, Sharma V, Kumar P, Koner AL (2018) Selective sensing of lysosomal iron(III) via three-component fluorescence-based strategy in living cells. Sens Actuators B 260:460–464

    Article  CAS  Google Scholar 

  22. Jia H, Gao X, Shi Y, Sayyadi N, Zhang Z, Zhao Q, Meng Q, Zhang R (2015) Fluorescence detection of Fe3+ ions in aqueous solution and living cells based on a high selectivity and sensitivity chemosensor. Spectrochim Acta Part A 149:674–681

    Article  CAS  Google Scholar 

  23. Kumar P, Kumar V, Gupta R (2015) Arene-based fluorescent probes for the selective detection of iron. RSC Adv 5:97874–97882

    Article  CAS  Google Scholar 

  24. Liu M, Jia L, Zhao Z, Han Y, Li Y, Peng Q, Zhang Q (2020) Fast and robust lead (II) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI). Chem Eng J 390:124667

    Article  CAS  Google Scholar 

  25. Beaussart A, Retourney C, Quilès F, Morais RDS, Gaiani C, Fiérobe H-P, El-Kirat-Chatel S (2021) Supported lysozyme for improved antimicrobial surface protection. J Colloid Interface Sci 582:764–772

    Article  CAS  Google Scholar 

  26. Ding W, Guan L, Han J, Mangala R, Luo Z (2017) Fluorescence chemosensing of water-soluble Ag14 nanoclusters for lysozyme and Hg2+ ions. Sens Actuators B 250:364–371

    Article  CAS  Google Scholar 

  27. Wei H, Wang Z, Yang L, Tian S, Hou C, Lu Y (2010) Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 135:1406–1410

    Article  CAS  Google Scholar 

  28. Lin YH, Tseng WL (2010) Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem 82:9194–9200

    Article  CAS  Google Scholar 

  29. Shanmugaraj K, Ilanchelian M (2016) A “turn-off” fluorescent sensor for the selective and sensitive detection of copper(II) ions using lysozyme stabilized gold nanoclusters. RSC Adv 6:54518–54524

    Article  CAS  Google Scholar 

  30. Mi W, Tang S, Jin Y, Shao N (2021) Au/Ag bimetallic nanoclusters stabilized by glutathione and lysozyme for ratiometric sensing of H2O2 and hydroxyl radicals. ACS Appl Nano Mater 4:1586–1595

    Article  CAS  Google Scholar 

  31. Pang S, Liu S (2017) Lysozyme-stabilized bimetallic gold/silver nanoclusters as a turn-on fluorescent probe for determination of ascorbic acid and acid phosphatase. Anal Methods 9:6713–6718

    Article  CAS  Google Scholar 

  32. Vicente-Escobar JO, García-Sánchez MÁ, Serratos IN, Millán-Pacheco C, Tello-Solís SR (2021) Binding of two tetrasulfophthalocyanines (Fe(III) and metal-free) to lysozyme: fluorescence spectroscopic and computational approach. J Fluoresc 31:787–796

    Article  CAS  Google Scholar 

  33. Bi S, Pang B, Wang T, Zhao T, Yu W (2014) Investigation on the interactions of clenbuterol to bovine serum albumin and lysozyme by molecular fluorescence technique. Spectrochim Acta Part A Mol Biomol Spectrosc 120:456–461

    Article  CAS  Google Scholar 

  34. Yang Y, Li D, Xu C (2015) Influences of urea, pH and metal ions on the interaction between cepharanthine and lysozyme by steady state fluorescence spectroscopy. J Mol Struct 1084:229–235

    Article  CAS  Google Scholar 

  35. Aghili Z, Taheri S, Zeinabad HA, Pishkar L, Saboury AA, Rahimi A, Falahati M (2016) Investigating the interaction of Fe nanoparticles with lysozyme by biophysical and molecular docking studies. PLoS One 11:e0164878

    Article  CAS  Google Scholar 

  36. Yamamoto T, Fukui N, Hori A, Matsui Y (2006) Circular dichroism and fluorescence spectroscopy studies of the effect of cyclodextrins on the thermal stability of chicken egg white lysozyme in aqueous solution. J Mol Struct 782:60–66

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research acknowledges the support from the Department of Science and Technology, New Delhi, India in the form of an INSPIRE Faculty Award (DST/INSPIRE/04/2017/002953) and from the Science and Engineering Research Board (SERB), Government of India under the Early Career Research (ECR) award (File No. ECR/2018/000748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanish Kumar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Vaid, K., Sarawagi, N. et al. Influence of Fe(III) on the Fluorescence of Lysozyme: a Facile and Direct Method for Sensitive and Selective Sensing of Fe(III). J Fluoresc 31, 1815–1821 (2021). https://doi.org/10.1007/s10895-021-02813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02813-1

Keywords

Navigation