Skip to main content
Log in

Synthesis, Characterization and Fluorescence Properties of Novel Porous Fe/ZnO Nano-Hybrid Assemblies by Using Berberis thunbergii Extract

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this work, novel Fe/ZnO nanocomposites (NCs) and Fe nanoparticles loaded onto porous ZnO nanostructures have been synthesized via a simple biotechnological route by using Berberis thunbergii extract. In this direction, the as-synthesized bio-based porous ZnO derivatives and human serum albumin (HSA), as a biopolymeric model, form nano-hybrid assemblies. The effect of loading Fe on properties of porous ZnO nanostructures as well as the behavior of the nano-hybrid assemblies were evaluated by using XRD, SEM, EDX, DLS, PL, CD, FTIR and UV/Visible-diffuse reflectance spectra (UV/Vis-DRS) techniques. The fluorescence results revealed that the interaction of Fe/ZnO NCs with HSA biopolymer led to the formation of a ground state complexes as nano-hybrid assemblies. The calculated thermodynamic parameters indicated that the binding process occurred spontaneously. The CD and FTIR spectra confirmed the changes in helicity of HSA as well as the random coil and β-turn in the secondary structure of HSA upon interaction with Fe/ZnO NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Jafarirad S (2016) “Molecular assemblies”, encyclopedia of biomedical polymers and polymeric biomaterials, by Taylor & Francis, p 4847

    Google Scholar 

  2. Žūkienė R, Snitka V (2015) Zinc oxide nanoparticle and bovine serum albumin interaction and nanoparticles influence on cytotoxicity in vitro. Colloids Surf B: Biointerfaces 135:316–323

    PubMed  Google Scholar 

  3. Brito JB, Silva JR, de Souza NC (2020) Morphology characterization of films from albumin and erythrosine dye: effect of experimental procedures. Colloid Interface Sci Commun 37:100290

    CAS  Google Scholar 

  4. de Oliveira RC, Benevides CA, Rodrigues GCP, Tenório RP (2019) Thermal denaturation and γ-irradiation effects on the crack patterns of bovine serum albumin (BSA) dry droplets. Colloid Interface Sci Commun 28:15–19

    Google Scholar 

  5. Alswat AA, Bin Ahmad M, SalehTA (2017) Preparation and characterization of zeolite\zinc oxide-copper oxide Nanocomposite: antibacterial activities. Colloid Interface Sci Commun 16:19–24

    CAS  Google Scholar 

  6. Sahoo T, Kim M, Hyeob Baek J, Jeon S-R, Kim JS, Yu Y-T, Lee C-R, Lee IH (2011) Synthesis and characterization of porous ZnO nanoparticles by hydrothermal treatment of a pure aqueous precursor. Mater Res Bull 46:525–530

    CAS  Google Scholar 

  7. Il’ves VG, Yu S, Sokovnin L, Murzakaev DAM (2016) Influence of Fe-doping on the structural and magnetic properties of ZnO Nanopowders, produced by the method of pulsed Electron beam evaporation. J Nanotechnol 8281247:1–13

    Google Scholar 

  8. George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Nel AE (2009) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1):15–29

    Google Scholar 

  9. Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, Wang M (2011) Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5(2):1223–1235

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiaolei S, Yan J, Xiaoqin L, Junbo W, Jie X, Xinhai H, Chong F, Songtao L (2014) Preparation, dielectric property and infrared emissivity of Fe-doped ZnO powder by coprecipitation method at various reaction time. Ceram Int 40:5307–5311

    Google Scholar 

  11. Shouli B, Teng G, Yangbo Z, Jianhua S, Dianqing L, Aifan C, Chung C, Liu F (2014) Sensing performance and mechanism of Fe-doped ZnO microflowers. Sensors Actuators B Chem 195:657–666

    Google Scholar 

  12. Dhiman P, Sharma SK, Knobel M, Ritu R, Singh M (2012) Magnetic properties of Fe doped ZnO Nanosystems synthesized by solution combustion method. Res J Recent Sci 1(8):48–52

    CAS  Google Scholar 

  13. Lin F, Jiang D, Ma X (2010) The influence of annealing on the magnetism of Fe doped ZnO prepared by mechanical alloying. Physica B 405:1466–1469

    CAS  Google Scholar 

  14. Aydin C, Abd El-sadek MS, Zheng K, Yahia IS, Yakuphanoglu F (2013) Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol-gel calcinations technique. Opt Laser Technol 48:447–452

    CAS  Google Scholar 

  15. Shahba H, Sabet M (2020) Two-step and green synthesis of highly fluorescent carbon quantum dots and carbon Nanofibers from pine fruit. J Fluorescence 30:927–938

    CAS  Google Scholar 

  16. Pourmahdi N, Sarrafi AHM, Larki A (2019) Carbon Dots Green Synthesis for Ultra-Trace Determination of Ceftriaxone Using Response Surface Methodology. J Fluoresc 29:887–897

    CAS  PubMed  Google Scholar 

  17. Ebadollahi R, Jafarirad S, Kosari-Nasab M, Mahjouri S (2019) Effect of explant source, perlite nanoparticles and TiO2/perlite nanocomposites on phytochemical composition of metabolites in callus cultures of Hypericum perforatum. Sci Rep 9:1–15

    CAS  Google Scholar 

  18. Jafarirad S, Kosari-Nasab M, Mohammadpour Tavana R, Mahjouri S, Ebadollahi R (2021) Impacts of manganese bio-based nanocomposites on phytochemical classification, growth and physiological responses of Hypericum perforatum L. shoot cultures. Ecotoxicol Environ Saf 209:111841. https://doi.org/10.1016/j.ecoenv.2020.111841

    Article  CAS  PubMed  Google Scholar 

  19. Nazari F, Jafarirad S, Movafeghi A, Kosari-Nasab M, Kazemi EM (2020) Toxicity of microwave-synthesized silver-reduced graphene oxide nanocomposites to the microalga Chlorella vulgaris: comparison with the hydrothermal method synthesized counterparts. J Environ Sci Health A 55:639–649

    CAS  Google Scholar 

  20. Jafarirad S, Salmasi M, Divband B, Sarabchi M (2019) Systematic study of Nd3+ on structural properties of ZnO nanocomposite for biomedical applications; in-vitro biocompatibility, bioactivity, photoluminescence and antioxidant properties. J Rare Earths 37:508–514

    CAS  Google Scholar 

  21. Jafarirad S, Kordi M, Kosari-Nasab M (2018) Investigation on microstructure, Lattice and Structural Chemistry of Biogenic Silver Nanoparticles. Int J Nanosci Nanotechnol 14:197–206

    Google Scholar 

  22. Jafarirad S, Hajat Ardehjani P, Movafeghi A (2019) Are the green synthesized nanoparticles safe for environment? A case study of aquatic plant Azolla filiculoides as an indicator exposed to magnetite nanoparticles fabricated using microwave hydrothermal treatment and plant extract. J Environ Sci Health Part A 54:516–527

    CAS  Google Scholar 

  23. Rezaei Z, Jafarirad S, Kosari-Nasab M (2019) Modulation of secondary metabolite profiles by biologically synthesized MgO/perlite nanocomposites in Melissa officinalis plant organ cultures. J Hazard Mater 380:120878

    CAS  PubMed  Google Scholar 

  24. del Pilar Fernández-Poyatos M, Ruiz-Medina A, Zengin G, Llorent-Martínez EJ (2019) Phenolic characterization, antioxidant activity, and enzyme inhibitory properties of Berberis thunbergii DC. Leaves: A Valuable Source of Phenolic Acids. Molecules 24(22):4171

    Google Scholar 

  25. Mokhber-Dezfuli N, Saeidnia S, Gohari AZ, Kurepaz M (2014) Mahmoodabadi Phytochemistry and Pharmacology of Berberis Species. Pharmacogn Revs 8(15):8–15

    Google Scholar 

  26. Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K (2000) Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor, proceedings of the National Academy of Sciences. Nat l Acad Sci 97(4):1433–1437

    CAS  Google Scholar 

  27. Mariam J, Dongre PM, Kothari DC (2011) Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluoresc 21(6):2193–2199

    CAS  PubMed  Google Scholar 

  28. Silambarasan M, Saravanan S, Soga T (2015) Effect of Fe-doping on the structural, morphological and optical properties of ZnO nanoparticles synthesized by solution combustion process. Physica E: Low-dimensional Syst Nanostruct 71:109–116

    CAS  Google Scholar 

  29. Saberi D, Mahdudi S, Cheraghi S, Heydari A (2014) Cu (II)–acetylacetone complex covalently anchored onto magnetic nanoparticles: synthesis, characterization and catalytic evaluation in amide bond formation via oxidative coupling of carboxylic acids with N, N-dialkylformamides. J Organomet Chem 772:222–228

    Google Scholar 

  30. Jafarirad S, Kordi M, Kosari-Nasab M (2017) Extracellular one-pot synthesis of nanosilver using Hyssopus officinalis L.: a biophysical approach on bioconstituent-Ag+ interactions. Inorganic Nano-Metal Chemistry 47(4):632–638

    CAS  Google Scholar 

  31. Jafarirad S, Taghizadeh PM, Divband B (2020) Biosynthesis, characterization and structural properties of a novel kind of Ag/ZnO Nanocomposites in order to increase its biocompatibility across human A549 cell line. BioNanoScience 10:42–53

    Google Scholar 

  32. Kwong TL, Yung KF (2015) Surfactant-free microwave-assisted synthesis of Fe-doped ZnO nanostars as photocatalyst for degradation of tropaeolin o in water under visible light. J Nanomater 16(1):199–208

    Google Scholar 

  33. Beltrán JJ, Osorio JA, Barrero CA, Hanna CB, Punnoose A (2013) Magnetic properties of Fe doped, co doped, and Fe+co co-doped ZnO. J Appl Phys 113(17):17C308

    Google Scholar 

  34. Behzad F, Jafarirad S, Samadi A, Barzegar A (2020) A systematic investigation on spectroscopic, conformational, and interactional properties of polypeptide/nanomaterial complex: effects of biobased synthesized maghemite nanocomposites on human serum albumin. Soft Materials 18(4):471–486

    CAS  Google Scholar 

  35. Bhogale A, Patel N, Sarpotdar P, Mariam J, Dongre PM, Miotello A, Kothari DC (2013) Systematic investigation on the interaction of bovine serum albumin with ZnO nanoparticles using fluorescence spectroscopy. Colloids Surf B: Biointerfaces 102:257–264

    CAS  PubMed  Google Scholar 

  36. Evale BG, Hanagodimath SM (2010) Static and dynamic quenching of biologically active coumarin derivative by aniline in benzene–acetonitrile mixtures. J Luminescence 130:1330–1337

    CAS  Google Scholar 

  37. Yan JK, Wang YY, Zhu L, Wu JY (2016) Green synthesis and characterization of zinc oxide nanoparticles using carboxylic curdlan and their interaction with bovine serum albumin. RSC Adv 6(81):77752–77759

    CAS  Google Scholar 

  38. Huang S, Qiu H, Xie J, Huang C, Su W, Hu B, Xiao Q (2016) Systematical investigation of in vitro molecular interaction between fluorescent carbon dots and human serum albumin. RSC Adv 6(50):44531–44542

    CAS  Google Scholar 

  39. Abuo-Zied OK, Ol A-S (2008) Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J Am Chem Soc 130(32):10793–10801

    Google Scholar 

  40. Roy S, Das TK (2016) Interaction of biosynthesized gold nanoparticles with BSA and CTDNA: a multi-spectroscopic approach. Polyhedron 115:111–118

    CAS  Google Scholar 

  41. Yue Y, Liu J, Fan J, Yao X (2011) Binding studies of phloridzin with human serum albumin and its effect on the conformation of protein. J Pharm Biomed Anal 56(2):336–342

    CAS  PubMed  Google Scholar 

  42. Esfandfar P, Falahati M, Saboury A (2016) Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin. J Biomol Struct Dyn 34(9):1962–1968

    CAS  PubMed  Google Scholar 

  43. Sun Y, Su B, Xu Q, Liu R (2012) Insights into the binding of 2-aminobenzothiazole with human serum albumin (HSA): spectroscopic investigation and molecular modeling studies. Appl Spectrosc 66(7):791–797

    CAS  PubMed  Google Scholar 

  44. Mariam J, Sivakami S, Dongre PM (2017) Elucidation of structural and functional properties of albumin bound to gold nanoparticles. J Biomol Struct Dyn 35(2):368–379

    CAS  PubMed  Google Scholar 

  45. Kragh-Hansen U, Hellec F, de Foresta B, le Maire M, Moller JV (2001) Detergents as probes of hydrophobic binding cavities in serum albumin and other water-soluble proteins. Biophys J 80(6):2898–2911

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang XY, Li WX, Cao H (2001) Study of the interaction between trans-resveratol and BSA by the multi-spectroscopic method. J Solut Chem 37(11):1609–1623

    Google Scholar 

  47. Albani JR (2011) Structure and dynamics of macromolecules: absorption and fluorescence studies, 1st ed. Elsevier Science, Amsterdam

  48. Prasanth S, Raj DR, Vineeshkumar TV, Thomas RK, Sudarsanakumar C (2016) Exploring the interaction of L-cysteine capped CuS nanoparticles with bovine serum albumin (BSA): a spectroscopic study. RSC Adv 6(63):58288–58295

    CAS  Google Scholar 

  49. Ambika S, Sundrarajan M (2015) Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. J Photochem Photobiol B Biol 149:143–148

    CAS  Google Scholar 

  50. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein− nanoparticle interactions: opportunities and challenges. Chem Rev 111(9):5610–5637

    CAS  PubMed  Google Scholar 

  51. Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I (2016) Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci Rep 6:20414

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang G, Lu Y, Hou H, Liu Y (2017) Probing the binding behavior and kinetics of silver nanoparticles with bovine serum albumin. RSC Adv 7(15):9393–9401

    CAS  Google Scholar 

  53. Ali MS, Al-Lohedan HA, Ola MS, Atta AM (2015) Interaction of polyvinylthiol-functionalized silver nanoparticles with bovine serum albumin. Digest J Nanomater Biostruct 10(1):253–264

    Google Scholar 

  54. Bai Z, Liu Y, Zhang P, Guo J, Ma Y, Yun X, Zhang F (2016) Fluorescence resonance energy transfer between bovine serum albumin and fluoresceinamine. Luminescence. 31(3):688–693

    CAS  PubMed  Google Scholar 

  55. Naveenraj S, Solomon RV, Venuvanalingam P, Asiri AM, Anandan S (2015) Interaction between toxic azo dye CI acid red 88 and serum albumins. J Lumin 143:715–722

    Google Scholar 

Download references

Code Availability

Not applicable.

Funding

The financial supports of University of Tabriz are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally. In addition, we are thankful from Dr. Saeed Salehi for his kind assistance in grammatical points of this paper. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Jafarirad.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest with this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panahi, R., Jafarirad, S., Samadi, A. et al. Synthesis, Characterization and Fluorescence Properties of Novel Porous Fe/ZnO Nano-Hybrid Assemblies by Using Berberis thunbergii Extract. J Fluoresc 31, 1191–1202 (2021). https://doi.org/10.1007/s10895-021-02726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02726-z

Keywords

Navigation