Skip to main content
Log in

Functionalized Silver Nanoparticles as Colorimetric and Fluorimetric Sensor for Environmentally Toxic Mercury Ions: An Overview

  • Review
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Nanoscience is a multifaceted field which encompasses metal nanoparticles (MNPs) having novel and size-related optical properties significantly different from the bulk level as well as at the atomic level. Amongst noble MNPs, the silver nanoparticles (AgNPs) have unique properties for metal interaction. Presently, there have been expedite reports which are taken under the review in virtue of sensing the mercury ions in aqueous media. Mercury dissemination in various forms contaminates the ecosystem. Globally mercury is ranked as the most toxic element and an urgent threat to humans since it causes major health issues. Employing MNPs, especially AgNPs for the detection of mercury ions is the economic, handy and apt method in contrast to time-consuming methods that use expensive instrumentations. The review highlights a study of colorimetric and fluorimetric detection of the level of Hg (II) ions in aqueous media selectively with high sensitivity in different courses of conditions using AgNPs synthesized by various approaches.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saleh TA, Fadillah G, Ciptawati E, Khaled M (2020) Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas. TrAC Trends Anal Chem 132:116016. https://doi.org/10.1016/j.trac.2020.116016

    Article  CAS  Google Scholar 

  2. Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, O’Connor D (2020) Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies. Environ Int 134:105281. https://doi.org/10.1016/j.envint.2019.105281

    Article  CAS  PubMed  Google Scholar 

  3. Rama Jyothi N, Abdulkhader Mohamed Farook N (2020) Mercury toxicity in public health. IntechOpen. https://doi.org/10.5772/intechopen.90333

  4. Yorifuji T, Tsuda T (2014) Minamata. In Encyclopedia of toxicology, 3rd edn. Elsevier, pp 340–344. https://doi.org/10.1016/B978-0-12-386454-3.00038-5

  5. So SCA, Tsoi MF, Cheung AJ, Cheung TT, Cheung BMY (2020) Blood and Urine Inorganic and Organic Mercury Levels in the United States from 1999 to 2016. Am J Med. S0002934320306069. https://doi.org/10.1016/j.amjmed.2020.06.023

  6. Ha E, Basu N, Bose-O’Reilly S, Dórea JG, McSorley E, Sakamoto M, Chan HM (2017) Current progress on understanding the impact of mercury on human health. Environ Res 152:419–433. https://doi.org/10.1016/j.envres.2016.06.042

    Article  CAS  PubMed  Google Scholar 

  7. Okpala COR, Sardo G, Vitale S, Bono G, Arukwe A (2018) Hazardous properties and toxicological update of mercury: from fish food to human health safety perspective. Crit Rev Food Sci Nutr 58:1986–2001. https://doi.org/10.1080/10408398.2017.12914911

    Article  CAS  PubMed  Google Scholar 

  8. Kim K-H, Kabir E, Jahan SA (2016) A review on the distribution of hg in the environment and its human health impacts. J Hazard Mater 306:376–385. https://doi.org/10.1016/j.jhazmat.2015.11.031

    Article  CAS  PubMed  Google Scholar 

  9. Bhatt KD, Vyas DJ, Makwana BA, Darjee SM, Jain VK (2014) Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of co(II) ions. Spectrochim Acta A Mol Biomol Spectrosc 121:94–100. https://doi.org/10.1016/j.saa.2013.10.0761

    Article  CAS  PubMed  Google Scholar 

  10. Yu L, Li N (2019) Noble metal nanoparticles-based colorimetric biosensor for visual quantification: a mini review. Chemosensors. 7:53. https://doi.org/10.3390/chemosensors7040053

    Article  CAS  Google Scholar 

  11. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414. https://doi.org/10.1016/j.scitotenv.2008.06.042

    Article  CAS  PubMed  Google Scholar 

  12. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96. https://doi.org/10.1016/j.cis.2008.09.002

    Article  CAS  Google Scholar 

  13. Badi’ah HI, Seedeh F, Supriyanto G, Zaidan AH (2019) Synthesis of Silver Nanoparticles and the Development in Analysis Method. IOP Conf Ser Earth Environ Sci 217:012005. https://doi.org/10.1088/1755-1315/217/1/012005

    Article  Google Scholar 

  14. Liu C, Chen X, Zong B, Mao S (2019) Recent advances in sensitive and rapid mercury determination with graphene-based sensors. J Mater Chem A 7:6616–6630. https://doi.org/10.1039/C9TA01009B

    Article  CAS  Google Scholar 

  15. Liu Y, Deng Y, Li T, Chen Z, Chen H, Li S, Liu H (2018) Aptamer-Based Electrochemical Biosensor for Mercury Ions Detection Using AuNPs-Modified Glass Carbon Electrode. J Biomed Nanotechnol 14:2156–2161. https://doi.org/10.1166/jbn.2018.2655

    Article  CAS  PubMed  Google Scholar 

  16. Hande PE, Samui AB, Kulkarni PS (2017) Selective nanomolar detection of mercury using coumarin based fluorescent hg(II)—ion imprinted polymer. Sensors Actuators B Chem 246:597–605. https://doi.org/10.1016/j.snb.2017.02.125

    Article  CAS  Google Scholar 

  17. Sajed S, Arefi F, Kolahdouz M, Sadeghi MA (2019) Improving sensitivity of mercury detection using learning based smartphone colorimetry. Sensors Actuators B Chem 298:126942. https://doi.org/10.1016/j.snb.2019.126942

    Article  CAS  Google Scholar 

  18. Zhang H, Marma M, Kim E, Mckenna C, Thompson M (2007) Mercuric Ion Sensing by a Film Bulk Acoustic Resonator. IEEE Trans Ultrason Ferroelect Freq Contr. 54:1723–1725. https://doi.org/10.1109/TUFFC.2007.456

    Article  Google Scholar 

  19. Xia N, Feng F, Liu C, Li R, Xiang W, Shi H, Gao L (2019) The detection of mercury ion using DNA as sensors based on fluorescence resonance energy transfer. Talanta. 192:500–507. https://doi.org/10.1016/j.talanta.2018.08.086

    Article  CAS  PubMed  Google Scholar 

  20. Erxleben H, Ruzicka J (2005) Atomic absorption spectroscopy for mercury, Automated by Sequential Injection and Miniaturized in Lab-on-Valve System. Anal Chem 77:5124–5128. https://doi.org/10.1021/ac058007s

    Article  CAS  PubMed  Google Scholar 

  21. Kodamatani H, Matsuyama A, Saito K, Kono Y, Kanzaki R, Tomiyasu T (2012) Sensitive determination method for mercury ion, methyl-, ethyl-, and phenyl-mercury in water and biological samples using high-performance liquid chromatography with Chemiluminescence detection. Anal Sci 28:959–965. https://doi.org/10.2116/analsci.28.959

    Article  CAS  PubMed  Google Scholar 

  22. Atwood DA (ed) (2006) Recent developments in mercury science. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  23. Guselnikova O, Svorcik V, Lyutakov O, Chehimi MM, Postnikov PS (2019) Preparation of selective and reproducible SERS sensors of Hg2+ ions via a sunlight-induced Thiol–Yne reaction on gold gratings. Sensors. 19:2110. https://doi.org/10.3390/s19092110

    Article  CAS  Google Scholar 

  24. Suvarapu LN, Baek S-O (2017) Recent studies on the speciation and determination of mercury in different environmental matrices using various analytical techniques. Int J Anal Chem 2017:1–28. https://doi.org/10.1155/2017/3624015

    Article  CAS  Google Scholar 

  25. Han FX, Patterson WD, Xia Y, Sridhar BBM, Su Y (2006) Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study. Water Air Soil Pollut 170:161–171. https://doi.org/10.1007/s11270-006-3003-5

    Article  CAS  Google Scholar 

  26. Walekar L, Dutta T, Kumar P, Ok YS, Pawar S, Deep A, Kim K-H (2017) Functionalized fluorescent nanomaterials for sensing pollutants in the environment: a critical review. TrAC Trends Anal Chem 97:458–467. https://doi.org/10.1016/j.trac.2017.10.012

    Article  CAS  Google Scholar 

  27. Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchim Acta 184:45–58. https://doi.org/10.1007/s00604-016-1967-4

    Article  CAS  Google Scholar 

  28. Ban DK, Paul S (2018) Rapid colorimetric and spectroscopy based sensing of heavy metal and cellular free oxygen radical by surface functionalized silver nanoparticles. Appl Surf Sci 458:245–251. https://doi.org/10.1016/j.apsusc.2018.07.069

    Article  CAS  Google Scholar 

  29. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445. https://doi.org/10.1002/andp.19083300302

    Article  Google Scholar 

  30. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  31. Caro C, Castillo PM, Klippstein R, Pozo D, Zaderenko AP (2010) Silver nanoparticles: Sensing and imaging applications. IntechOpen. https://doi.org/10.5772/8513

  32. Valeur B (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40. https://doi.org/10.1016/S0010-8545(00)00246-0

    Article  CAS  Google Scholar 

  33. Lakowicz JR, Geddes CD (1991) Topics in fluorescence spectroscopy Vol.4. Plenum Press, New York

    Google Scholar 

  34. Prodi L (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83. https://doi.org/10.1016/S0010-8545(00)00242-3

    Article  CAS  Google Scholar 

  35. Lakowicz JR, Geddes CD (1991) Topics in fluorescence spectroscopyVol.2. Plenum Press, New York

    Google Scholar 

  36. Bhardwaj N, Bhardwaj SK, Nayak MK, Mehta J, Kim K-H, Deep A (2017) Fluorescent nanobiosensors for the targeted detection of foodborne bacteria. TrAC Trends Anal Chem 97:120–135. https://doi.org/10.1016/j.trac.2017.09.010

    Article  CAS  Google Scholar 

  37. Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol 13:18–23. https://doi.org/10.1016/j.susmat.2017.08.001

    Article  CAS  Google Scholar 

  38. Vajtai R (ed) (2013) Springer handbook of Nanomaterials. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  39. Kumar KH, Venkatesh N, Bhowmik H, Kuila A (2018) Metallic Nanoparticle: A Review. Biomed J Sci Tech Res 4:3765–3775

    Google Scholar 

  40. Hauser EA, Lynn JE (1941) Experiments in colloid chemistry J. Chem. Educ. 18(7):349. https://doi.org/10.1021/ed018p349.4

  41. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55. https://doi.org/10.1039/df9511100055

    Article  Google Scholar 

  42. Frens G (1973) Controlled nucleation for the regulation of the particle size in Monodisperse gold suspensions. Nat Phys Sci 241:20–22. https://doi.org/10.1038/physci241020a0

    Article  CAS  Google Scholar 

  43. Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R (2018) Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol 46:1210–1220. https://doi.org/10.1080/21691401.2018.1449118

    Article  CAS  PubMed  Google Scholar 

  44. Natsuki J (2015) A Review of Silver Nanoparticles: Synthesis Methods, Properties and Applications. IJMSA 4:325. https://doi.org/10.11648/j.ijmsa.20150405.17

    Article  CAS  Google Scholar 

  45. Prabukumar C, Bhat KU (2018) Purification of silver nanowires synthesised by Polyol method. Mater Today 5:22487–22493. https://doi.org/10.1016/j.matpr.2018.06.620

    Article  CAS  Google Scholar 

  46. Nešović K, Janković A, Kojić V, Vukašinović-Sekulić M, Perić-Grujić A, Rhee KY, Mišković-Stanković V (2018) Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels – synthesis, biological and physicochemical properties and silver release kinetics. Compos Part B 154:175–185. https://doi.org/10.1016/j.compositesb.2018.08.005

    Article  CAS  Google Scholar 

  47. De Matteis V, Cascione M, Toma C, Leporatti S (2018) Silver nanoparticles: synthetic routes, in vitro toxicity and Theranostic applications for Cancer disease. Nanomaterials. 8:319. https://doi.org/10.3390/nano8050319

    Article  CAS  PubMed Central  Google Scholar 

  48. Mavani K, Shah M (2013) Synthesis of Silver Nanoparticles by using Sodium Borohydride as a Reducing Agent. https://doi.org/10.13140/2.1.3116.8648

    Book  Google Scholar 

  49. Guzman M, Arcos M, Dille J, Godet S, Rousse C (2018) Effect of the concentration of NaBH4 and N2H4 as Reductant agent on the synthesis of copper oxide nanoparticles and its potential antimicrobial applications. Nano BioMed ENG 10:392–405. https://doi.org/10.5101/nbe.v10i4.p392-405

    Article  CAS  Google Scholar 

  50. Raghavendra GM, Jung J, Kim D, Seo J (2016) Step-reduced synthesis of starch-silver nanoparticles. Int J Biol Macromol 86:126–128. https://doi.org/10.1016/j.ijbiomac.2016.01.057

    Article  CAS  PubMed  Google Scholar 

  51. Paul S, Basu K, Das KS, Banerjee A (2018) Peptide-based hydrogels as a scaffold for in situ synthesis of metal nanoparticles: catalytic activity of the Nanohybrid system. ChemNanoMat. 4:882–887. https://doi.org/10.1002/cnma.201800227

    Article  CAS  Google Scholar 

  52. Rodrigues TS, Zhao M, Yang T, Gilroy KD, da Silva AGM, Camargo PHC, Xia Y (2018) Synthesis of colloidal metal Nanocrystals: a comprehensive review on the Reductants. Chem Eur J 24:16944–16963. https://doi.org/10.1002/chem.201802194

    Article  CAS  PubMed  Google Scholar 

  53. Odularu AT (2018) Metal nanoparticles: thermal decomposition, biomedicinal applications to Cancer treatment, and future perspectives. Bioinorg Chem Appl 2018:1–6. https://doi.org/10.1155/2018/9354708

    Article  CAS  Google Scholar 

  54. Mourdikoudis S, Pallares RM, Thanh NTK (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 10:12871–12934. https://doi.org/10.1039/C8NR02278J

    Article  CAS  PubMed  Google Scholar 

  55. Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. IJMS. 17:1534. https://doi.org/10.3390/ijms17091534

    Article  CAS  Google Scholar 

  56. Heera P, Shanmugam S (2015) Nanoparticle characterization and application: An overview. Int J Curr Microbiol App Sci 4:379–386

    CAS  Google Scholar 

  57. Bothra S, Solanki JN, Sahoo SK, Callan JF (2014) Anion-driven selective colorimetric detection of Hg2+ and Fe3+ using functionalized silver nanoparticles. RSC Adv 4:1341–1346. https://doi.org/10.1039/C3RA44945A1

    Article  CAS  Google Scholar 

  58. Vinod Kumar V, Anthony SP (2014) Silver nanoparticles based selective colorimetric sensor for Cd2+, Hg2+ and Pb2+ ions: tuning sensitivity and selectivity using co-stabilizing agents. Sensors Actuators B Chem 191:31–36. https://doi.org/10.1016/j.snb.2013.09.089

    Article  CAS  Google Scholar 

  59. Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Analyt Chimica Acta 751:24–43. https://doi.org/10.1016/j.aca.2012.08.043

    Article  CAS  Google Scholar 

  60. Li Y, Wu P, Xu H, Zhang Z, Zhong X (2011) Highly selective and sensitive visualizable detection of Hg2+ based on anti-aggregation of gold nanoparticles. Talanta. 84:508–512. https://doi.org/10.1016/j.talanta.2011.01.037

    Article  CAS  PubMed  Google Scholar 

  61. Das S, Aktara MN, Sahoo NK, Jha PK, Hossain M (2017) Sensitive and robust colorimetric assay of Hg2+ and S2− in aqueous solution directed by 5-sulfosalicylic acid-stabilized silver nanoparticles for wide range application in real samples. J Environ Chem Eng 5:5645–5654. https://doi.org/10.1016/j.jece.2017.10.053

    Article  CAS  Google Scholar 

  62. Liu T, Dong JX, Liu SG, Li N, Lin SM, Fan YZ, Lei JL, Luo HQ, Li NB (2017) Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg2+ ions detection. J Hazard Mater 322:430–436. https://doi.org/10.1016/j.jhazmat.2016.10.034

    Article  CAS  PubMed  Google Scholar 

  63. Tanvir F, Yaqub A, Tanvir S, An R, Anderson WA (2019) Colorimetric detection of mercury ions in water with capped silver Nanoprisms. Materials. 12:1533. https://doi.org/10.3390/ma12091533

    Article  CAS  PubMed Central  Google Scholar 

  64. Balasurya S, Syed A, Thomas AM, Marraiki N, Elgorban AM, Raju LL, Das A, Khan SS (2020) Rapid colorimetric detection of mercury using silver nanoparticles in the presence of methionine. Spectrochim Acta A Mol Biomol Spectrosc 228(117712):117712. https://doi.org/10.1016/j.saa.2019.117712

    Article  CAS  PubMed  Google Scholar 

  65. Mehtab S, Zaidi MGH, Irshad Siddiqi T (2018) Designing Fructose Stabilized Silver Nanoparticles for Mercury(II) Detection and Potential Antibacterial Agents. Mat Sci Res India 15:241–249. https://doi.org/10.13005/msri/150305

    Article  CAS  Google Scholar 

  66. Buduru P, Reddy BCSR, Naidu NVS (2017) Functionalization of silver nanoparticles with glutamine and histidine for simple and selective detection of Hg2+ ion in water samples. Sensors Actuators B Chem 244:972–982. https://doi.org/10.1016/j.snb.2017.01.041

    Article  CAS  Google Scholar 

  67. Bhattacharjee Y, Chatterjee D, Chakraborty A (2018) Mercaptobenzoheterocyclic compounds functionalized silver nanoparticle, an ultrasensitive colorimetric probe for hg(II) detection in water with picomolar precision: a correlation between sensitivity and binding affinity. Sensors Actuators B Chem 255:210–216. https://doi.org/10.1016/j.snb.2017.08.066

    Article  CAS  Google Scholar 

  68. Faghiri F, Ghorbani F (2019) Colorimetric and naked eye detection of trace Hg2+ ions in the environmental water samples based on plasmonic response of sodium alginate impregnated by silver nanoparticles. J Hazard Mater 374:329–340. https://doi.org/10.1016/j.jhazmat.2019.04.052

    Article  CAS  PubMed  Google Scholar 

  69. Puchum S, Meelapsom R, Muniandy SS, Lee HL, Pencharee S, Amatatongchai M, Suttisintong K, Jarujamrus P (2019) Use of unmodified silver nanoparticles (AgNPs) as colorimetric hg(II) sensor: a new approach to sensitive and high sample throughput determination of hg(II) under high influence of ionic suppression. Int J Environ Anal Chem 99:139–156. https://doi.org/10.1080/03067319.2019.1580703

    Article  CAS  Google Scholar 

  70. Zhan L, Yang T, Zhen SJ, Huang CZ (2017) Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(II) and chromium(III). Microchim Acta 184:3171–3178. https://doi.org/10.1007/s00604-017-2250-z

    Article  CAS  Google Scholar 

  71. Vyas G, Bhatt S, Paul P (2019) Synthesis of Calixarene-Capped Silver Nanoparticles for Colorimetric and Amperometric Detection of Mercury (Hg II , Hg 0 ). ACS Omega 4:3860–3870. https://doi.org/10.1021/acsomega.8b03299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sk I, Khan MA, Ghosh S, Roy D, Pal S, Homechuadhuri S, Alam MA (2019) A reversible biocompatible silver nanoconstracts for selective sensing of mercury ions combined with antimicrobial activity studies. Nano-Structures Nano-Objects 17:185–193. https://doi.org/10.1016/j.nanoso.2019.01.012

    Article  CAS  Google Scholar 

  73. Sharma P, Mourya M, Choudhary D, Goswami M, Kundu I, Dobhal MP, Tripathi CSP, Guin D (2018) Thiol terminated chitosan capped silver nanoparticles for sensitive and selective detection of mercury (II) ions in water. Sensors Actuators B Chem 268:310–318. https://doi.org/10.1016/j.snb.2018.04.121

    Article  CAS  Google Scholar 

  74. Sangaonkar GM, Desai MP, Dongale TD, Pawar KD (2020) Selective interaction between phytomediated anionic silver nanoparticles and mercury leading to amalgam formation enables highly sensitive, colorimetric and memristor-based detection of mercury. Sci Rep 10:2037. https://doi.org/10.1038/s41598-020-58844-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sakly N, Marzouk W, Ouada HB, Majdoub H (2017) Enhancing performances of colorimetric response of carboxymethylcellulose-stabilized silver nanoparticles: a fully eco-friendly assay for Hg2+ detection. Sensors Actuators B Chem 253:918–927. https://doi.org/10.1016/j.snb.2017.07.035

    Article  CAS  Google Scholar 

  76. Marzouk W, Sakly N, Roudesli S, Ben Ouada H, Majdoub H (2016) Ag-nanocomposite based on carboxymethylcellulose for humidity detection: green synthesis and sensing performances. J Appl Polym Sci 133. https://doi.org/10.1002/app.43686

  77. Firdaus ML, Fitriani I, Wyantuti S, Hartati YW, Khaydarov R, Mcalister JA, Obata H, Gamo T (2017) Colorimetric detection of mercury(II) ion in aqueous solution using silver nanoparticles. Anal Sci 33:831–837. https://doi.org/10.2116/analsci.33.831

    Article  CAS  PubMed  Google Scholar 

  78. Kumar V, Singh DK, Mohan S, Bano D, Gundampati RK, Hasan SH (2017) Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion. J Photochem Photobiol B Biol 168:67–77. https://doi.org/10.1016/j.jphotobiol.2017.01.022

    Article  CAS  Google Scholar 

  79. Janani B, Syed A, Thomas AM, Bahkali AH, Elgorban AM, Raju LL, Khan SS (2020) UV–vis spectroscopic method for the sensitive and selective detection of mercury by silver nanoparticles in presence of alanine. Optik. 204:164160. https://doi.org/10.1016/j.ijleo.2019.164160

    Article  CAS  Google Scholar 

  80. Makwana BA, Darjee S, Jain VK, Kongor A, Sindhav G, Rao MV (2017) A comparative study: metal nanoparticles as fluorescent sensors for biomolecules and their biomedical application. Sensors Actuators B Chem 246:686–695. https://doi.org/10.1016/j.snb.2017.02.054

    Article  CAS  Google Scholar 

  81. Singh H, Bamrah A, Bhardwaj SK, Deep A, Khatri M, Kim K-H, Bhardwaj N Nanomaterial-based fluorescent sensors for the detection of lead ions. J Hazardous Mater (2020):124379. https://doi.org/10.1016/j.jhazmat.2020.124379

  82. Jouyban A, Rahimpour E (2020) Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade. Talanta. 217:121071. https://doi.org/10.1016/j.talanta.2020.121071

    Article  CAS  PubMed  Google Scholar 

  83. Bhatt KD, Vyas DJ, Makwana BA, Darjee SM, Jain VK, Shah H (2016) Turn-on fluorescence probe for selective detection of hg(II) by calixpyrrole hydrazide reduced silver nanoparticle: application to real water sample. Chin Chem Lett 27:731–737. https://doi.org/10.1016/j.cclet.2016.01.012

    Article  CAS  Google Scholar 

  84. Kraithong S, Sirirak J, Soisuwan K, Wanichacheva N, Swanglap P (2018) Enhancing sensitivity of novel Hg2+ fluorescent sensor via Plasmonic enhancement of silver nanoparticles. Sensors Actuators B Chem 258:694–703. https://doi.org/10.1016/j.snb.2017.11.049

    Article  CAS  Google Scholar 

  85. Sebastian M, Aravind A, Mathew B (2018) Simple unmodified green silver nanoparticles as fluorescent sensor for Hg(II) ions. Mater Res Express 5:085015. https://doi.org/10.1088/2053-1591/aad317

    Article  CAS  Google Scholar 

  86. Su D, Yang X, Xia Q, Zhang Q, Chai F, Wang C, Qu F (2014) Folic acid functionalized silver nanoparticles with sensitivity and selectivity colorimetric and fluorescent detection for Hg2+ and efficient catalysis. Nanotechnology 25:355702. https://doi.org/10.1088/0957-4484/25/35/355702

    Article  CAS  PubMed  Google Scholar 

  87. Xiao N, Dong JX, Liu SG, Li N, Fan YZ, Ju YJ, Li NB, Luo HQ (2018) Multifunctional fluorescent sensors for independent detection of multiple metal ions based on Ag nanoclusters. Sensors Actuators B Chem 264:184–192. https://doi.org/10.1016/j.snb.2018.02.177

    Article  CAS  Google Scholar 

  88. Zhou Y, Wang J, Yang G, Ma S, Zhang M, Yang J (2019) Cysteine-rich protein-templated silver nanoclusters as a fluorometric probe for mercury( ii ) detection. Anal Methods 11:733–738. https://doi.org/10.1039/C8AY02662A

    Article  CAS  Google Scholar 

  89. Bhatt KD, Gupte HS, Makwana BA, Vyas DJ, Maity D, Jain VK (2012) Calix receptor edifice; scrupulous turn off fluorescent sensor for Fe (III), co (II) and cu (II). J Fluorescence 22. https://doi.org/10.1007/s10895-012-1086-5

  90. Bhatt KD, Makwana BA, Vyas DJ, Mishra DR, Jain VK (2014) Selective recognition by novel calix system: ICT based chemosensor for metal ions. J Luminescence 146. https://doi.org/10.1016/j.jlumin.2013.10.004

  91. Li C, Wei C (2017) DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions. Sensors Actuators B Chem 242:563–568. https://doi.org/10.1016/j.snb.2016.11.091

    Article  CAS  Google Scholar 

  92. Mao A, Wei C (2019) Cytosine-rich ssDNA-templated fluorescent silver and copper/silver nanoclusters: optical properties and sensitive detection for mercury(II). Microchim Acta 186:541. https://doi.org/10.1007/s00604-019-3658-4

    Article  CAS  Google Scholar 

  93. Dey S, Kumar A, Mahto A, Raval IH, Modi KM, Haldar S, Jain VK (2020) Oxacalix[4]arene templated silver nanoparticles as dual readout sensor: developing portable kit for rapid detection of methylmercury and its speciation. Sensors Actuators B Chem 317:128180. https://doi.org/10.1016/j.snb.2020.128180

    Article  CAS  Google Scholar 

  94. Liu J, Vellaisamy K, Yang G, Leung C-H, Ma D-L (2017) Luminescent turn-on detection of hg(II) via the quenching of an iridium(III) complex by hg(II)-mediated silver nanoparticles. Sci Rep 7:3620. https://doi.org/10.1038/s41598-017-03952-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Nandan C. Pomal: Review writing and editing, software. Keyur D. Bhatt: First author, corresponding author, concept design, editing, and modification. Krunal M. Modi: Corresponding author, concept design, editing, and modification. Ajay L. Desai: Review modification, software. Nihal P. Patel: Review modification, software. Anita Kongor: Review modification, software. Viliam Kolivoška: Corresponding author, concept design, editing, and modification.

Corresponding authors

Correspondence to Keyur D. Bhatt, Krunal M. Modi or Viliam Kolivoška.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

No Conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomal, N.C., Bhatt, K.D., Modi, K.M. et al. Functionalized Silver Nanoparticles as Colorimetric and Fluorimetric Sensor for Environmentally Toxic Mercury Ions: An Overview. J Fluoresc 31, 635–649 (2021). https://doi.org/10.1007/s10895-021-02699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02699-z

Keywords

Navigation