Skip to main content
Log in

Spectroscopic Analysis of Fe Ion-Induced Fluorescence Quenching of the Green Fluorescent Protein ZsGreen

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The fluorescence of fluorescent proteins (FPs) is quenched when they are exposed to certain transition metals, which makes them promising receptor materials for metal biosensors. In this study, we report the spectroscopic analysis of metal-induced fluorescence quenching of the fluorescent protein ZsGreen from Zoanthus sp. The fluorescence of ZsGreen was reduced to 2%, 1%, and 20% of its original intensity by Fe2+, Fe3+, and Cu2+, respectively. Metal titration experiments indicated that the dissociation constants of Fe2+, Fe3+, and Cu2+ for ZsGreen were 11.5, 16.3, and 68.2 μM, respectively. The maximum binding capacities of ZsGreen for Fe2+, Fe3+, and Cu2+ were 103.3, 102.2, and 82.9, respectively. Reversibility experiments indicated that the fluorescence of ZsGreen, quenched by Fe2+ and Fe3+, could be recovered, but only to about 15% of its original intensity, even at a 50-fold molar excess of EDTA. In contrast, the fluorescence quenched by Cu2+ could be recovered up to 89.47% of its original intensity at a Cu2+: EDTA ratio of 1:5. The homology model of ZsGreen revealed that the protein does not share any metal-binding sites with previously reported FPs, suggesting that ZsGreen contains unprecedented binding sites for fluorescence quenching metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  2. Remington SJ (2011) Green fluorescent protein: a perspective. Protein Sci 20:1509–1519

    Article  CAS  Google Scholar 

  3. Zimmer M (2002) Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759–781

    Article  CAS  Google Scholar 

  4. Collings DA (2013) Subcellular localization of transiently expressed fluorescent fusion proteins. Methods Mol Biol 1069:227–258

    Article  CAS  Google Scholar 

  5. Chalfie M (1995) Green fluorescent protein. Photochem Photobiol 62:651–656

    Article  CAS  Google Scholar 

  6. Bajar BT, Wang ES, Zhang S, Lin MZ, Chu J (2016) A guide to fluorescent protein FRET pairs. Sensors (Basel) 16:1488

    Article  Google Scholar 

  7. Lu K, Vu CQ, Matsuda T, Nagai T (2019) Fluorescent protein-based indicators for functional super-resolution imaging of biomolecular activities in living cells. Int J Mol Sci 20:5784

    Article  CAS  Google Scholar 

  8. Stepanenko OV, Verkhusha VV, Kuznetsova IM, Uversky VN, Turoverov KK (2008) Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes. Curr Protein Pept Sci 9:338–369

    Article  CAS  Google Scholar 

  9. Backmark AE, Olivier N, Snijder A, Gordon E, Dekker N, Ferguson AD (2013) Fluorescent probe for high-throughput screening of membrane protein expression. Protein Sci 22:1124–1132

    Article  CAS  Google Scholar 

  10. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  CAS  Google Scholar 

  11. Press DA, Melikov R, Conkar D, Firat-Karalar EN, Nizamoglu S (2016) Fluorescent protein integrated white LEDs for displays. Nanotechnology 27:45LT01

    Article  Google Scholar 

  12. Xu Y, Hwang KY, Nam KH (2018) Spectral and structural analysis of large stokes shift fluorescent protein dKeima570. J Microbiol 56:822–827

    Article  CAS  Google Scholar 

  13. Seward HE, Bagshaw CR (2009) The photochemistry of fluorescent proteins: implications for their biological applications. Chem Soc Rev 38:2842–2851

    Article  CAS  Google Scholar 

  14. Kim SE, Hwang KY, Nam KH (2019) Spectral and structural analysis of a red fluorescent protein from Acropora digitifera. Protein Sci 28:375–381

    Article  CAS  Google Scholar 

  15. Saeed S, Mehreen H, Gerlevik U, Tariq A, Manzoor S, Noreen Z, Sezerman U, Bokhari H (2020) HriGFP novel Flourescent protein: expression and applications. Mol Biotechnol 62:280–288

    Article  CAS  Google Scholar 

  16. Pal PP, Bae JH, Azim MK, Hess P, Friedrich R, Huber R, Moroder L, Budisa N (2005) Structural and spectral response of Aequorea victoria green fluorescent proteins to chromophore fluorination. Biochemistry 44:3663–3672

    Article  CAS  Google Scholar 

  17. Eli P, Chakrabartty A (2006) Variants of DsRed fluorescent protein: development of a copper sensor. Protein Sci 15:2442–2447

    Article  CAS  Google Scholar 

  18. Sumner JP, Westerberg NM, Stoddard AK, Hurst TK, Cramer M, Thompson RB, Fierke CA, Kopelman R (2006) DsRed as a highly sensitive, selective, and reversible fluorescence-based biosensor for both Cu+ and Cu2+ ions. Biosens Bioelectron 21:1302–1308

    Article  CAS  Google Scholar 

  19. Peterffy JP, Szabo M, Szilagyi L, Lanyi S, Abraham B (2015) Fluorescence of a Histidine-modified enhanced green fluorescent protein (EGFP) effectively quenched by Copper(II) ions. Part II Molecular Determinants. J Fluoresc 25:871–883

    Article  CAS  Google Scholar 

  20. Bae JE, Kim IJ, Nam KH (2017) Disruption of the hydrogen bonding network determines the pH-induced non-fluorescent state of the fluorescent protein ZsYellow by protonation of Glu221. Biochem Biophys Res Commun 493:562–567

    Article  CAS  Google Scholar 

  21. Yu X, Strub MP, Barnard TJ, Noinaj N, Piszczek G, Buchanan SK, Taraska JW (2014) An engineered palette of metal ion quenchable fluorescent proteins. PLoS One 9:e95808

    Article  Google Scholar 

  22. Kim IJ, Kim S, Park J, Eom I, Kim S, Kim JH, Ha SC, Kim YG, Hwang KY, Nam KH (2016) Crystal structures of Dronpa complexed with quenchable metal ions provide insight into metal biosensor development. FEBS Lett 590:2982–2990

    Article  CAS  Google Scholar 

  23. Bae JE, Kim IJ, Nam KH (2018) Spectroscopic Analysis of the Cu2+-Induced Fluorescence Quenching of Fluorescent Proteins AmCyan and mOrange2. Mol Biotechnol 60:485–491

    Article  CAS  Google Scholar 

  24. Kim IJ, Xu Y, Nam KH (2020) Spectroscopic and structural analysis of Cu2+-induced fluorescence quenching of ZsYellow. Biosensors (Basel) 10:29

    Article  Google Scholar 

  25. Barondeau DP, Kassmann CJ, Tainer JA, Getzoff ED (2002) Structural chemistry of a green fluorescent protein Zn biosensor. J Am Chem Soc 124:3522–3524

    Article  CAS  Google Scholar 

  26. Lee W, Kim H, Kang Y, Lee Y, Yoon Y (2019) A biosensor platform for metal detection based on enhanced green fluorescent protein. Sensors (Basel) 19:1846

    Article  CAS  Google Scholar 

  27. Martinez AR, Heil JR, Charles TC (2019) An engineered GFP fluorescent bacterial biosensor for detecting and quantifying silver and copper ions. Biometals 32:265–272

    Article  CAS  Google Scholar 

  28. Hirayama T, Nagasawa H (2017) Chemical tools for detecting Fe ions. J Clin Biochem Nutr 60:39–48

    Article  CAS  Google Scholar 

  29. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    Article  CAS  Google Scholar 

  30. Wenck A, Pugieux C, Turner M, Dunn M, Stacy C, Tiozzo A, Dunder E, van Grinsven E, Khan R, Sigareva M, Wang WC, Reed J, Drayton P, Oliver D, Trafford H, Legris G, Rushton H, Tayab S, Launis K, Chang YF, Chen DF, Melchers L (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251

    Article  CAS  Google Scholar 

  31. Bryda EC, Men H, Davis DJ, Bock AS, Shaw ML, Chesney KL, Hankins MA (2019) A novel conditional ZsGreen-expressing transgenic reporter rat strain for validating Cre recombinase expression. Sci Rep 9:13330

    Article  Google Scholar 

  32. McCann JV, Liu A, Musante L, Erdbrugger U, Lannigan J, Dudley AC (2019) A miRNA signature in endothelial cell-derived extracellular vesicles in tumor-bearing mice. Sci Rep 9:16743

    Article  Google Scholar 

  33. Gwon YD, Strand M, Lindqvist R, Nilsson E, Saleeb M, Elofsson M, Overby AK, Evander M (2020) Antiviral activity of Benzavir-2 against emerging Flaviviruses. Viruses 12:351

    Article  CAS  Google Scholar 

  34. Nam KH, Kwon OY, Sugiyama K, Lee WH, Kim YK, Song HK, Kim EE, Park SY, Jeon H, Hwang KY (2007) Structural characterization of the photoswitchable fluorescent protein Dronpa-C62S. Biochem Biophys Res Commun 354:962–967

    Article  CAS  Google Scholar 

  35. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  Google Scholar 

  36. Pletneva N, Pletnev V, Tikhonova T, Pakhomov AA, Popov V, Martynov VI, Wlodawer A, Dauter Z, Pletnev S (2007) Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus. Acta Crystallogr D Biol Crystallogr 63:1082–1093

    Article  CAS  Google Scholar 

  37. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB 3rd, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315

    Article  CAS  Google Scholar 

  38. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  39. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1D1A1B03033087 and NRF-2017M3A9F6029736).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K.H.N.; Biochemical studies, I.J.K.; structure analysis, Y.X. and K.H.N.; manuscript writing, I.J.K. and K.H.N. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ki Hyun Nam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I.J., Xu, Y. & Nam, K.H. Spectroscopic Analysis of Fe Ion-Induced Fluorescence Quenching of the Green Fluorescent Protein ZsGreen. J Fluoresc 31, 307–314 (2021). https://doi.org/10.1007/s10895-020-02656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02656-2

Keywords

Navigation