Skip to main content
Log in

Synthesis of Carbon Dots by Varying Doped Elements and Application in Serine Detection

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) with different doping elements were successfully synthesized via a simple hydrothermal strategy. 3-amino-4-chlorophenylboronic acid, 3-aminobenzeneboronic acid, aniline, and benzene were used as precursors, respectively. The B/N co-doping CDs (BNCDs) derived from 3-aminobenzeneboronic acid show brightest fluorescence among the CDs products with quantum yield at 0.15. The fluorescence of BNCDs exhibits good photostability and excitation-independent emission behavior. The bright blue emission of BNCDs can be quenched by serine, which is a kind of neutral aliphatic amino acid containing hyroxyl groups with polarity. It is possibly due to the molecular collision between excited state of BNCDs and the ground state of serine. BNCDs can be served as fluorophore probe for the assay of serine based on the efficient quenching effect. The approach for the determination of serine shows a high sensitivity with a detection limit at 0.14 nM, which is lower than those of previous works. Furthermore, the present BNCDs system can be employed to monitor serine in real food and biological samples. The strategy may be a potential way for the application in food safety and biomedicine fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  2. Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    CAS  Google Scholar 

  3. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    CAS  Google Scholar 

  4. Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun Y-P (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131:11308–11309

    CAS  Google Scholar 

  5. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun Y-P (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    CAS  Google Scholar 

  6. Yang ST, Wang X, Wang HF, Lu FS, Luo PJG, Cao L, Meziani MJ, Liu JH, Liu YF, Chen M, Huang YP, Sun YP (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113:18110–18114

    CAS  Google Scholar 

  7. Zhao HX, Liu LQ, Liu ZD, Wang Y, Zhao XJ, Huang CZ (2011) Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem Commun 47:2604–2606

    CAS  Google Scholar 

  8. Bao L, Liu C, Zhang Z-L, Pang D-W (2015) Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv Mater 27:1663–1667

    CAS  Google Scholar 

  9. Panda S, Jadav A, Panda N, Mohapatra S (2018) A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples. New J Chem 42:2074–2080

    CAS  Google Scholar 

  10. Li W, Liu Y, Wu M, Feng X, Redfern SAT, Shang Y, Yong X, Feng T, Wu K, Liu Z, Li B, Chen Z, Tse JS, Lu S, Yang B (2018) Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv Mater 30:1800676

    Google Scholar 

  11. Kalaiyarasan G, Hemlata C, Joseph J (2019) Fluorescence turn-on, specific detection of cystine in human blood plasma and urine samples by nitrogen-doped carbon quantum dots. ACS Omega 4:1007–1014

    CAS  Google Scholar 

  12. Wang Y, Yan L, Ji G, Wang C, Gu H, Luo Q, Chen Q, Chen L, Yang Y, Ma C-Q, Liu X (2019) Synthesis of N,S-doped carbon quantum dots for use in organic solar cells as the zno modifier to eliminate the light-soaking effect. ACS Appl Mater Interfaces 11:2243–2253

    CAS  Google Scholar 

  13. Cheng Y, Li C, Mu R, Li Y, Xing T, Chen B, Huang C (2018) Dynamically long-term imaging of cellular RNA by fluorescent carbon dots with surface isoquinoline moieties and amines. Anal Chem 90:11358–11365

    CAS  Google Scholar 

  14. Arcudi F, Dordevic L, Prato M (2016) Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nanodots. Angew Chem 128:2147–2152

    Google Scholar 

  15. Rodríguez-Padrón D, Algarra M, Tarelho LAC, Frade J, Franco A, de Miguel G, Jiménez J, Rodríguez-Castellón E, Luque R (2018) Catalyzed microwave-assisted preparation of carbon quantum dots from lignocellulosic residues. ACS Sustain Chem Eng 6:7200–7205

    Google Scholar 

  16. Mondal TK, Ghorai UK, Saha SK (2018) Dual-emissive carbon quantum dot-Tb nanocomposite as a fluorescent indicator for a highly selective visual detection of hg(II) in water. ACS Omega 3:11439–11446

    CAS  Google Scholar 

  17. Li H, He X, Liu Y, Yu H, Kang Z, Lee S-T (2011) Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater Res Bull 46:147–151

    CAS  Google Scholar 

  18. Neabo JR, Vigier-Carriere C, Rondeau-Gagne S, Morin J-F (2012) Room-temperature synthesis of soluble, fluorescent carbon nanoparticles from organogel precursors. Chem Commun 48:10144–10146

    CAS  Google Scholar 

  19. Bao L, Zhang Z-L, Tian Z-Q, Zhang L, Liu C, Lin Y, Qi B, Pang D-W (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23:5801–5806

    CAS  Google Scholar 

  20. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee S-T (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434

    CAS  Google Scholar 

  21. Krysmann MJ, Kelarakis A, Dallas P, Giannelis EP (2012) Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J Am Chem Soc 134:747–750

    CAS  Google Scholar 

  22. Wang X, Cao L, Yang S-T, Lu F, Meziani MJ, Tian L, Sun KW, Bloodgood MA, Sun Y-P (2010) Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed 49:5310–5314

    CAS  Google Scholar 

  23. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    CAS  Google Scholar 

  24. Hu S, Tian R, Dong Y, Yang J, Liu J, Chang Q (2013) Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots. Nanoscale 5:11665–11671

    CAS  Google Scholar 

  25. Moon BJ, Jang D, Yi Y, Lee H, Sang JK, Oh Y, Sang HL, Min P, Lee S, Bae S (2017) Multi-functional nitrogen self-doped graphene quantum dots for boosting the photovoltaic performance of BHJ solar cells. Nano Energy 34:36–46

    CAS  Google Scholar 

  26. Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials syntheses, properties and applications. Chem Soc Rev 43:7067–7098

    CAS  Google Scholar 

  27. Park Y, Yoo J, Lim B, Kwon W, Rhee SW (2016) Improving the functionality ofcarbon nanodots: doping and surface functionalization. J Mater Chem 4:11582–11603

    CAS  Google Scholar 

  28. Atchudan R, Edison TNJI, Aseer KR, Perumal S, Karthik N, Lee YR (2018) Highly fluorescent nitrogen-doped carbon dots derived from phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink. Biosens Bioelectron 99:303–311

    CAS  Google Scholar 

  29. Gong P, Sun L, Wang F, Liu X, Yan Z, Wang M, Zhang L, Tian Z, Liu Z, You J (2019) Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chem Engin J 356:994–1002

    CAS  Google Scholar 

  30. Lu M, Duan Y, Song Y, Tan J, Zhou L (2018) Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry. J Mol Liq 269:766–774

    CAS  Google Scholar 

  31. Li X, Lau SP, Tang L, Ji R, Yang P (2014) Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots. Nanoscale 6:5323–5328

    CAS  Google Scholar 

  32. Shi B, Su Y, Zhang L, Huang M, Liu R, Zhao S (2016) Nitrogen and phosphorus codoped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Appl Mater Interfaces 8:10717–10725

    CAS  Google Scholar 

  33. Wang Y, Yue Q, Tao L, Zhang C, Li C-Z (2018) Fluorometric determination of hydroquinone by using blue emitting N/S/P-codoped carbon dots. Microchim Acta 185:550

    Google Scholar 

  34. Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S (2015) Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83:173–179

    CAS  Google Scholar 

  35. Zhao J, Huang M, Zhang L, Zou M, Chen D, Huang Y, Zhao S (2017) Unique approach to develop carbon dot-based nanohybrid near-infrared ratiometric fluorescent sensor for the detection of mercury ions. Anal Chem 89:8044–8049

    CAS  Google Scholar 

  36. Zheng M, Li Y, Wang W, Xie Z, Jing X (2016) One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl Mater Interfaces 8:23533–23541

    CAS  Google Scholar 

  37. Wang WJ, Peng JW, Li FM, Su BY, Chen X, Chen XM (2019) Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions. Microchim Acta 186:32

    Google Scholar 

  38. Kalhan SC, Hanson RW (2012) Resurgence of serine: an often neglected but indispensable amino acid. J Biol Chem 287:19786–19791

    CAS  Google Scholar 

  39. Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39:191–198

    CAS  Google Scholar 

  40. Polcari D, Kwan A, Van Horn MR, Danis L, Pollegioni L, Ruthazer ES, Mauzeroll J (2014) Disk-shaped Amperometric enzymatic biosensor for in vivo detection of d-serine. Anal Chem 86:3501–3507

    CAS  Google Scholar 

  41. Dai W, Li H, Li M, Li C, Wu X, Yang B (2015) Electrochemical imprinted polycrystalline nickel−nickel oxide HalfNanotube-modified boron-doped diamond electrode for the detection of L-serine. ACS Appl Mater Interfaces 7:22858–22867

    CAS  Google Scholar 

  42. Kugimiya A, Matsuzaki E (2014) Microfluidic analysis of serine levels using Seryl-tRNA Synthetase coupled with spectrophotometric detection. Appl Biochem Biotechnol 174:2527–2536

    CAS  Google Scholar 

  43. Li S, Yu Q, Lu X, Zhao S (2009) Determination of D,L-serine in midbrain of Parkinson’s disease mouse by capillary electrophoresis with in-column light-emitting diode induced fluorescence detection. J Sep Sci 32:282–287

    CAS  Google Scholar 

  44. Roushani M, Shamsipur M, Pourmortazavi SM (2012) Amprometric detection of Glycine, l-serine, and l-alanine using glassy carbon electrode modified by NiO nanoparticles. J Appl Electrochem 42:1005–1011

    CAS  Google Scholar 

  45. Saha M, Das S (2014) Electrochemical detection of l-serine and l-phenylalanine at bamboo charcoal–carbon nanosphere electrode. J Nanostruct Chem 4:102

    Google Scholar 

  46. Yaqoob M, Nabi A (2001) Flow-injection method for the determination of serine using immobilized enzyme. Talanta 55:1181–1186

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (91543206), the Natural Science Foundation (ZR2014BQ017, ZR2015BM024, and 2013SJGZ07) and the Tai-Shan Scholar Research Fund of Shandong Province and research foundation of Liaocheng University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoli Yue.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3.76 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Guan, R., Shao, X. et al. Synthesis of Carbon Dots by Varying Doped Elements and Application in Serine Detection. J Fluoresc 30, 1447–1456 (2020). https://doi.org/10.1007/s10895-020-02592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02592-1

Keywords

Navigation