Skip to main content
Log in

A Fluorescent “Turn-off” Probe for the Determination of Curcumin Using Upconvert Luminescent Carbon Dots

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This work established a novel and simple method for quantitative determination of curcumin by developing a “turn-off” fluorescence probe based on upconvert luminescent carbon dots (p-CDs). The carbon dots were synthesized with p-aminobenzoic acid (PABA) and ethanol by solvothermal method and had specific up-conversion luminescence properties which could be applied in other sensing fields. The sensing mechanism of this fluorescent probe was based on the inter filter effect (IFE) between p-CDs and curcumin. As the concentration of curcumin increased, the fluorescence of p-CDs could be selectively quenched. Under the optimal conditions, the fluorescence quenching intensity of p-CDs had a good linear relationship with curcumin in the range of 0.4–45 µΜ and the detection limit was 0.133 µM. In addition, the fluorescent “turn-off” probe constructed with p-CDs exhibited high accuracy and recovery in the analysis of real sample curry powder, indicating that the fluorescence “turn-off” probe had potential application for the detection of curcumin in the complex matrixes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Govindarajan VS (1980) Turmeric–chemistry, technology, and quality. Crit Rev Food Sci Nutr 12(3):199–301

    CAS  Google Scholar 

  2. Zokhtareh R, Rahimnejad M (2018) A novel sensitive electrochemical sensor based on nickel chloride solution modified glassy carbon electrode for curcumin determination. Electroanalysis 30(5):921–927

    CAS  Google Scholar 

  3. Zhang Q, Zhang C, Li Z, Ge J, Li C, Dong C, Shuang S (2015) Nitrogen-doped carbon dots as fluorescent probe for detection of curcumin based on the inner filter effect. Rsc Adv 5(115):95054–95060

    CAS  Google Scholar 

  4. Basnet P, Skalko-Basnet N (2011) Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 16(6):4567–4598

    CAS  PubMed Central  Google Scholar 

  5. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: The story so far. Eur J Cancer 41(13):1955–1968

    CAS  Google Scholar 

  6. Shi Y, Li C, Liu S, Liu Z, Zhu J, Yang J, Hu X (2015) Facile synthesis of fluorescent carbon dots for determination of curcumin based on fluorescence resonance energy transfer. Rsc Adv 5(79):64790–64796

    CAS  Google Scholar 

  7. Afkhami A, Pirdadeh-Beiranvand M, Madrakian T (2017) A method based on ultrasound-assisted solidification of floating drop microextraction technique for the spectrophotometric determination of curcumin in turmeric powder. Anal Bioanal Chem Res 4(1):1–10

    CAS  Google Scholar 

  8. Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12(3):332–347

    CAS  PubMed Central  Google Scholar 

  9. Shome S, Das Talukdar A, Choudhury MD, Bhattacharya MK, Upadhyaya H (2016) Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. J Pharm Pharmacol 68(12):1481–1500

    CAS  Google Scholar 

  10. Khonche A, Biglarian O, Panahi Y, Valizadegan G, Soflaei SS, Ghamarchehreh ME, Majeed M, Sahebkar A (2016) Adjunctive therapy with curcumin for peptic ulcer: a randomized controlled trial. Drug Res 66(8):444–448

    CAS  Google Scholar 

  11. Wang F, Huang W, Wang Y (2008) Fluorescence enhancement effect for the determination of curcumin with yttrium(III)-curcumin-sodium dodecyl benzene sulfonate system. J Lumin 128(1):110–116

    CAS  Google Scholar 

  12. Ziyatdinova GK, Nizamova AM, Budnikov HC (2012) Voltammetric determination of curcumin in spices. J Anal Chem 67(6):591–594

    CAS  Google Scholar 

  13. Chan W-H, Wu H-Y, Chang WH (2006) Dosage effects of curcumin on cell death types in a human osteoblast cell line. Food Chem Toxicol 44(8):1362–1371

    CAS  Google Scholar 

  14. Wang F, Huang W (2007) Determination of curcumin by its quenching effect on the fluorescence of Eu3+-tryptophan complex. J Pharm Biomed Anal 43(1):393–398

    Google Scholar 

  15. Tang B, Ma L, Wang HY, Zhang GY (2002) Study on the supramolecular interaction of curcumin and beta-cyclodextrin by spectrophotometry and its analytical application. J Agric Food Chem 50(6):1355–1361

    CAS  PubMed Central  Google Scholar 

  16. Lee JH, Choung M-G (2011) Determination of curcuminoid colouring principles in commercial foods by HPLC. Food Chem 124(3):1217–1222

    CAS  Google Scholar 

  17. Ansari MJ, Ahmad S, Kohli K, Ali J, Khar RK (2005) Stability-indicating HPTLC determination of curcumin in bulk drug and pharmaceutical formulations. J Pharm Biomed Anal 39(1–2):132–138

    CAS  PubMed Central  Google Scholar 

  18. Kunati SR, Yang SM, William BM, Xu Y (2018) An LC-MS/MS method for simultaneous determination of curcumin, curcumin glucuronide and curcumin sulfate in a phase II clinical trial. J Pharm Biomed Anal 156:189–198

    CAS  PubMed Central  Google Scholar 

  19. Li K, Li Y, Yang L, Wang L, Ye B (2014) The electrochemical characterization of curcumin and its selective detection in Curcuma using a graphene-modified electrode. Anal Methods 6(19):7801–7808

    CAS  Google Scholar 

  20. Chaisiwamongkhol K, Ngamchuea K, Batchelor-McAuley C, Compton RG (2017) Multiwalled carbon nanotube modified electrodes for the adsorptive stripping voltammetric determination and quantification of curcumin in turmeric. Electroanalysis 29(4):1049–1055

    CAS  Google Scholar 

  21. Zhang ZX, Zhou J, Liu Y, Tang J, Tang WH (2015) Cyclodextrin capped CdTe quantum dots as versatile fluorescence sensors for nitrophenol isomers. Nanoscale 7(46):19540–19546

    CAS  Google Scholar 

  22. Wechakorn K, Chanpanich P, Kamkalong P, Anantachisilp S (2019) Rhodamine-triazole functionalized Fe3O4 @ SiO2 nanoparticles as fluorescent sensors for heavy metal ions. Orient J Chem 35(3):1054–1061

    CAS  Google Scholar 

  23. Wei YL, Li H, Hao H, Chen YX, Dong C, Wang G (2015) β-Cyclodextrin functionalized Mn-doped ZnS quantum dots for the chiral sensing of tryptophan enantiomers. Polym Chem 6:591–597

    CAS  Google Scholar 

  24. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    CAS  Google Scholar 

  25. Yang ST, Wang X, Wang HF, Lu FS, Luo PJG, Cao L, Meziani MJ, Liu JH, Liu YF, Chen M, Huang YP, Sun YP (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113(42):18110–18114

    CAS  Google Scholar 

  26. Cao L, Wang X, Meziani MJ, Lu FS, Wang HF, Luo PJG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11318+

    CAS  PubMed Central  Google Scholar 

  27. Kong B, Zhu AW, Ding CQ, Zhao XM, Li B, Tian Y (2012) Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater 24(43):5844–5848

    CAS  Google Scholar 

  28. Ding H, Cheng LW, Ma YY, Kong JL, Xiong HM (2013) Luminescent carbon quantum dots and their application in cell imaging. New J Chem 37(8):2515–2520

    CAS  Google Scholar 

  29. Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L (2014) One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 68:258–264

    CAS  Google Scholar 

  30. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381

    CAS  Google Scholar 

  31. Tan J, Zhang J, Li W, Zhang L, Yue D (2016) Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications. J Mater Chem C 4(42):10146–10153

    CAS  Google Scholar 

  32. Liu Y, Gong X, Dong W, Zhou R, Shuang S, Dong C (2018) Nitrogen and phosphorus dual-doped carbon dots as a label-free sensor for Curcumin determination in real sample and cellular imaging. Talanta 183:61–69

    CAS  Google Scholar 

  33. Bian W, Wang X, Wang YK, Yang HF, Huang JL, Cai ZW, Choi MMF (2018) Boron and nitrogen co-doped carbon dots as a sensitive fluorescent probe for the detection of curcumin. Luminescence 33(1):174–180

  34. Bian W, Zhang QQ, Chen BB, Zou HY, Li YF, Huang CZ (2018) Inner filter with carbon quantum dots: A selective sensing platform for detection of hematin in human red cells. Biosens Bioelectron 100:148–154

  35. Liu ZX, Wu ZL, Gao MX, Liu H, Huang CZ (2016) Carbon dots with aggregation induced emission enhancement for visual permittivity detection. Chem Commun 52(10):2063–2066

    CAS  Google Scholar 

  36. Hu Q, Gao L, Rao SQ, Yang ZQ, Li T, Gong XJ (2019) Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chem 280:195–202

    CAS  Google Scholar 

  37. Bajerski L, Maciel TR, Haas SE (2018) Simultaneous determination of curcumin and quinine co-encapsulated in nanoemulsion by stability-indicating LC method. Curr Pharm Anal 14(3):255–261

    CAS  Google Scholar 

  38. Baig MMF, Chen Y-C (2017) Bright carbon dots as fluorescence sensing agents for bacteria and curcumin. J Colloid Interface Sci 501:341–349

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support by the National Nature Science Foundation of China (No. 21671132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Yaping Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Zhuang, Q., Cui, H. et al. A Fluorescent “Turn-off” Probe for the Determination of Curcumin Using Upconvert Luminescent Carbon Dots. J Fluoresc 30, 1469–1476 (2020). https://doi.org/10.1007/s10895-020-02590-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02590-3

Keywords

Navigation