Skip to main content
Log in

Investigation of Spectral Interactions between a SrAl2O4:Eu2+, Dy3+ Phosphor and Nano-Scale TiO2

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Herein, we studied light induced interactions between two well-known luminescent materials, SrAl2O4:Eu2+, Dy3+ and nano-scale TiO2 in poly(methyl methacrylate) (PMMA). These two materials were chosen due to their stable nature, efficient spectral properties and more specifically, overlapping excitation/emission bands. When these materials were used together in 1:1 ratio by weight (w/w), the composite exhibited 76% enhancement in the emission intensity with respect to the individual phosphor. Although the luminescence mechanism of both materials is clarified in the literature, spectral interactions of them have not been studied up to now. In our opinion, the TiO2 nano-particles (TiO2 NPs) act as light-harvesting agents for the phosphor particles creating a substantial enhancement on the light absorption efficiency of the phosphor. Additionally, the TiO2 nanoparticles suggest a promising way to boost the phosphorescent activity of the SrAl2O4:Eu2+, Dy3+ by a cost-effective way and further investigation of the mechanism may be subject of future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rohwer LS (2003) Handbook of luminescence. Display Materials and Devices, American Scientific

    Google Scholar 

  2. Feldmann C, Jüstel T, Ronda CR, Schmidt PJ (2003) Inorganic luminescent materials: 100 years of research and application. Adv Funct Mater 13:511–516

    Article  CAS  Google Scholar 

  3. Geng J, Wu Z-P, Chen W, Luo L (2003) Properties of long afterglow SrAl2O4: Eu2+, Dy3+ phosphor. J Inorg Mater 18:480–484

    CAS  Google Scholar 

  4. Peng T, Yang H, Pu X, Hu B, Jiang Z, Yan C (2004) Combustion synthesis and photoluminescence of SrAl2O4: Eu, Dy phosphor nanoparticles. Mater Lett 58:352–356

    Article  CAS  Google Scholar 

  5. Rojas-Hernandez RE, Rubio-Marcos F, Rodriguez MÁ, Fernandez JF (2018) Long lasting phosphors: SrAl2O4: Eu, Dy as the most studied material. Renew Sust Energ Rev 81:2759–2770

    Article  CAS  Google Scholar 

  6. Luo X, Cao W, Xiao Z (2006) Investigation on the distribution of rare earth ions in strontium aluminate phosphors. J Alloys Compd 416:250–255

    Article  CAS  Google Scholar 

  7. Botterman J, Joos JJ, Smet PF (2014) Trapping and detrapping in SrAl2O4: Eu, Dy persistent phosphors: influence of excitation wavelength and temperature. Phys Rev B 90:85147

    Article  Google Scholar 

  8. Dutczak D, Jüstel T, Ronda C, Meijerink A (2015) Eu2+ luminescence in strontium aluminates. Phys Chem Chem Phys 17:15236–15249

    Article  CAS  Google Scholar 

  9. Kshatri DS, Khare A, Jha P (2013) Effects of Dy concentration on luminescent properties of SrAl2O4: Eu phosphors. Optik-International Journal for Light and Electron Optics 124:2974–2978

    Article  CAS  Google Scholar 

  10. Mishra SB, Mishra AK, Revaprasadu N, Hillie KT, Steyn WJM, Coetsee E, Swart HC (2009) Strontium aluminate/polymer composites: morphology, luminescent properties, and durability. J Appl Polym Sci 112:3347–3354

    Article  CAS  Google Scholar 

  11. Del Cerro PR, Salminen T, Lastusaari M, Petit L (2018) Persistent luminescent borosilicate glasses using direct particles doping method. Scr Mater 151:38–41

    Article  Google Scholar 

  12. Chen Z, Zhu Y, Guo X et al (2018) Comparison of the luminescent properties of warm-toned long-lasting phosphorescent composites: SiO2/red-emitting color converter@ SrAl2O4: Eu2+, Dy3+ and PMMA/red-emitting color converter@ SrAl2O4: Eu2+, Dy3+. J Lumin 199:1–5

    Article  CAS  Google Scholar 

  13. Aydin I, Ertekin K, Demirci S, Gultekin S, Celik E (2016) Sol-gel synthesized Sr4Al14O25: Eu2+/Dy3+ blue–green phosphorous as oxygen sensing materials. Opt Mater 62:285–296

    Article  CAS  Google Scholar 

  14. Choi J, Park H, Hoffmann MR (2010) Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation. J Mater Res 25:149–158

    Article  CAS  Google Scholar 

  15. Du S-Y, Li Z-Y (2010) Enhanced light absorption of TiO2 in the near-ultraviolet band by au nanoparticles. Opt Lett 35:3402–3404

    Article  CAS  Google Scholar 

  16. Naseem S, Khan W, Khan S, Husain S, Ahmad A (2018) Dielectric response and room temperature ferromagnetism in Cr doped anatase TiO2 nanoparticles. J Magn Magn Mater 447:155–166

    Article  CAS  Google Scholar 

  17. Mendiola-Alvarez SY, Guzmán-Mar JL, Turnes-Palomino G, Maya-Alejandro F, Caballero-Quintero A, Hernández-Ramírez A, Hinojosa-Reyes L (2019) Synthesis of Cr3+-doped TiO2 nanoparticles: characterization and evaluation of their visible photocatalytic performance and stability. Environ Technol 40:144–153

    Article  CAS  Google Scholar 

  18. Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madras G (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20:2900–2907

    Article  CAS  Google Scholar 

  19. Nguyen HH, Gyawali G, Hoon JS, Sekino T, Lee SW (2018) Cr-doped TiO2 nanotubes with a double-layer model: an effective way to improve the efficiency of dye-sensitized solar cells. Appl Surf Sci 458:523–528

    Article  CAS  Google Scholar 

  20. Dholam R, Patel N, Santini A, Miotello A (2010) Efficient indium tin oxide/Cr-doped-TiO2 multilayer thin films for H2 production by photocatalytic water-splitting. Int J Hydrog Energy 35:9581–9590

    Article  CAS  Google Scholar 

  21. Yang K, Pu W, Tan Y, Zhang M, Yang C, Zhang J (2014) Enhanced photoelectrocatalytic activity of Cr-doped TiO2 nanotubes modified with polyaniline. Mater Sci Semicond Process 27:777–784

    Article  CAS  Google Scholar 

  22. Mercado CC, Knorr FJ, McHale JL et al (2012) Location of hole and electron traps on nanocrystalline anatase TiO2. J Phys Chem C 116:10796–10804

    Article  CAS  Google Scholar 

  23. Mercado C, Seeley Z, Bandyopadhyay A, Bose S, McHale JL (2011) Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing. ACS Appl Mater Interfaces 3:2281–2288

    Article  CAS  Google Scholar 

  24. Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  25. Gfroerer TH (2006) Photoluminescence in analysis of surfaces and interfaces. Encyclopedia of analytical chemistry: applications, theory and instrumentation

  26. Baranwal BP, Singh AK, Varma A (2011) Spectroscopic studies on some fluorescent mixed-ligand titanium (IV) complexes. Spectrochim Acta A Mol Biomol Spectrosc 84(1):125–129

    Article  CAS  Google Scholar 

  27. Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Fedorenko L, Kshnyakin V, Baran J (2014) Room temperature photoluminescence of anatase and rutile TiO2 powders. J Lumin 146:199–204

    Article  CAS  Google Scholar 

  28. Dorenbos P (2003) Energy of the first 4f7→ 4f65d transition of Eu2+ in inorganic compounds. J Lumin 104:239–260

    Article  CAS  Google Scholar 

  29. Wang X, Shen S, Feng Z, Li C (2016) Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics. Chin J Catal 37:2059–2068

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors would like to thank to BAP funds of the Dokuz Eylul University (2017 KB Fen 033 and 2019 KB Fen 002). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) measurements were performed in the Center for Fabrication and Applications of Electronic Materials (EMUM). We would like to thank all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Oguzlar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oguzlar, S., Ongun, M.Z., Keskin, O.Y. et al. Investigation of Spectral Interactions between a SrAl2O4:Eu2+, Dy3+ Phosphor and Nano-Scale TiO2. J Fluoresc 30, 839–847 (2020). https://doi.org/10.1007/s10895-020-02555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02555-6

Keywords

Navigation