Skip to main content
Log in

The Fluorescence Property of Zirconium-Based MOFs Adsorbed Sulforhodamine B

  • Fluorescence News Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Sulforhodamine B (SRB) is widely utilized for cell staining and laser field. But its application is limited by aggregation-caused quenching (ACQ). In this work, we evaluated the use of UiO-66 and UiO-67 of Zr-based metal organic frameworks (Zr-MOFs) as the host to adsorb SRB molecules due to the high stabily and good loading capacity of Zr-MOFs. The fluorescence properties of the compounds were then discussed respectively. Due to the aperture difference between UiO-66 and UiO-67, they showed distinct fluorescence properties after loading SRB. When the concentration reaches 5 ppm, fluorescence quenching begins to occur in SRB@UiO-66, while it occurs in SRB@UiO-67 at 2 ppm. The solution of quenching phenomenon could open new avenues for the extensive use of SRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Schulz-Ekloff G, Duffel DW BV, Schoonheydt RA (2002) Chromophores in porous silicas and minerals: preparation and optical properties. Microporous Mesoporous Mater 88:91

    Article  CAS  Google Scholar 

  2. Rao H-H, Xue Z-H, Zhao G-H, Li S-Y, Du X (2016) Fluorescence emission properties of rhodamine B encapsulated organic-inorganic hybrid mesoporous silica host. J Non-Cryst Solids 450:32

    Article  CAS  Google Scholar 

  3. Yuan WZ, Lu P, Chen S, Lam JW, Wang Z, Liu Y, Kwok HS, Ma Y, Tang (2010) B. Z. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state. Adv Mater 22(19):2159

    Article  CAS  Google Scholar 

  4. Han F, Fan L, Wang X, Li W (2012) Sulforhodamine B restaining as a whole-cell label allows visualizing one more fluorochrome and its application in assaying protein nucleocytoplasmic distribution. Cytometry A 81(6):532

    Article  Google Scholar 

  5. Kitamura M, Murakami K, Yamada K, Kawai K, Kunishima M (2013) Binding of sulforhodamine B to human serum albumin: a spectroscopic study. Dyes Pigm 99(3):588

    Article  CAS  Google Scholar 

  6. Kim HM, Kim SBHMoonS, Kang *JongS, Oh Goo Taeg, Hong Dong Ho (1996) Efficient fixation procedure of human leukemia cells in sulforhodamine B cytotoxicity assay. J Pharmacol Toxicol Methods 36:163

    Article  CAS  Google Scholar 

  7. Voigt W, Sulforhodamine B (2005) Assay and chemosensitivity. Methods Mol Med 110:39

    CAS  PubMed  Google Scholar 

  8. Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1(3):1112

    Article  CAS  Google Scholar 

  9. Martín V, Costela A, Pintado-Sierra M, García-Moreno I (2011) Sulforhodamine B doped polymeric matrices: a high efficient and stable solid-state laser. J Photochem Photobiol A 219(2–3):265

    Article  Google Scholar 

  10. Mani RGG, Ahamed MB (2013) Energy transfer in solid-state dye lasers based on methyl methacrylate co-doped with sulforhodamine B and crystal violet. Chin Phys B 22(11):114207

    Article  Google Scholar 

  11. Dongpeng Yan JL, Wei M, Evans DG, Duan X (2009) Sulforhodamine B intercalated layered double hydroxide thin film with polarized photoluminescence. J Phys Chem B 113:1381

    Article  Google Scholar 

  12. Zhao Q, Yang Q (2015) Transforming the behavior of conventional chromophores from aggregation-caused quenching to aggregation-induced emission. Gongneng Cailiao/journal of Functional Materials 46(14):14001

    CAS  Google Scholar 

  13. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112(2):673

    Article  CAS  Google Scholar 

  14. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933

    Article  CAS  Google Scholar 

  15. Cui Y, Li B, He H, Zhou W, Chen B, Qian G (2016) Metal-organic frameworks as platforms for functional materials. Acc Chem Res 49(3):483

    Article  CAS  Google Scholar 

  16. Luo F, Yan C, Dang L, Krishna R, Zhou W, Wu H, Dong X, Han Y, Hu TL, O’Keeffe M et al (2016) UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J Am Chem Soc 138(17):5678

    Article  CAS  Google Scholar 

  17. Jiang D, Burrows AD, Edler KJ (2011) Size-controlled synthesis of MIL-101(Cr) nanoparticles with enhanced selectivity for CO2 over N2. CrystEngComm 13(23):6916

    Article  CAS  Google Scholar 

  18. Shengqian Ma DS, Ambrogio M, Fillinger JA, Parkin Sean, Zhou Hong-Cai (2007) Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129:1858

    Article  Google Scholar 

  19. Li YA, Yang S, Liu QK, Chen GJ, Ma JP, Dong YB (2016) Pd(0)@UiO-68-AP: chelation-directed bifunctional heterogeneous catalyst for stepwise organic transformations. Chem Commun 52(39):6517

    Article  CAS  Google Scholar 

  20. Xiangshi Meng BG, Yuan D, Zeller M, Wang Cheng (2016) Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Sci Adv 2(8):e1600480

    Article  Google Scholar 

  21. Hod I, Sampson MD, Deria P, Kubiak CP, Farha OK, Hupp JT (2015) Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal 5(11):6302

    Article  CAS  Google Scholar 

  22. Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M, Matsuoka M (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. J Phys Chem C 116(39):20848

    Article  CAS  Google Scholar 

  23. Gkaniatsou E, Sicard C, Ricoux R, Benahmed L, Bourdreux F, Zhang Q, Serre C, Mahy JP, Steunou N (2018) Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules. Angew Chem 57(49):16141

    Article  CAS  Google Scholar 

  24. Feng D, Liu TF, Su J, Bosch M, Wei Z, Wan W, Yuan D, Chen YP, Wang X, Wang K et al (2015) Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat Commun 6:5979

    Article  Google Scholar 

  25. Aubrey ML, Ameloot R, Wiers BM, Long JR (2014) Metal–organic frameworks as solid magnesium electrolytes. Energy Environ Sci 7(2):667

    Article  CAS  Google Scholar 

  26. Yuanxun Chen DN, Yang X, Liu C, Yin J, Cai K (2018) Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim Acta 278:114

    Article  Google Scholar 

  27. Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B (2016) Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. J Am Chem Soc 138(18):5785

    Article  CAS  Google Scholar 

  28. Samokhvalov JDMLMA (2014) Adsorption of naphthalene and indole on F300 MOF in liquid phase by the complementary spectroscopic, kinetic and DFT studies. J Porous Mater 21:709

    Article  Google Scholar 

  29. Das A, Biswas S (2017) A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p -nitrophenol. Sens Actuators B 250:121

    Article  CAS  Google Scholar 

  30. Li H, Han Y, Shao Z, Li N, Huang C, Hou H (2017) Water-stable Eu-MOF fluorescent sensors for trivalent metal ions and nitrobenzene. Dalton Trans 46(36):12201

    Article  CAS  Google Scholar 

  31. Su Y, Yu J, Li Y, Phua SFZ, Liu G, Lim WQ, Yang X, Ganguly R, Dang C, Yang C et al (2018) Versatile bimetallic lanthanide metal-organic frameworks for tunable emission and efficient fluorescence sensing. Commun Chem 1(1)

  32. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga Silvia, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850

    Article  Google Scholar 

  33. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem Mater 22(24):6632

    Article  CAS  Google Scholar 

  34. Yang Q, Wang Y, Wang J, Liu F, Hu N, Pei H, Yang W, Li Z, Suo Y, Wang J (2018) High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67). Food Chem 254:241

    Article  CAS  Google Scholar 

  35. Allendorf MD, Bauer CA, Bhakta RK, Houk RJ (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38(5):1330

    Article  CAS  Google Scholar 

  36. Cai H, Lu W, Yang C, Zhang M, Li M, Che C-M, Li D (2019) Tandem Förster resonance energy transfer induced luminescent ratiometric thermometry in dye-encapsulated biological metal-organic frameworks. Adv Opt Mater 7(2):1801149

    Article  Google Scholar 

  37. Tsai F-C, Xia Y, Ma N, Shi J-J, Jiang T, Chiang T-C, Zhang Z-C, Tsen W-C (2014) Adsorptive removal of acid orange 7 from aqueous solution with metal–organic framework material, iron (III) trimesate. Desalin Water Treat 57(7):3218

    Article  Google Scholar 

  38. Zhan X-Q, Yu X-Y, Tsai F-C, Ma N, Liu H-L, Han Y, Xie L, Jiang T, Shi D, Xiong Y (2018) Magnetic MOF for AO7 removal and targeted delivery. Crystals 8(6):250

    Article  Google Scholar 

  39. Fluch U, McCarthy BD, Ott S (2019) Post synthetic exchange enables orthogonal click chemistry in a metal organic framework. Dalton Trans 48(1):45

    Article  CAS  Google Scholar 

  40. Lu Z, Wu M, Wu S, Yang S, Li Y, Liu X, Zheng L, Cao Q, Ding Z (2016) Modulating the optical properties of the AIE fluophor confined within UiO-66’s nanochannels for chemical sensing. Nanoscale 8(40):17489

    Article  CAS  Google Scholar 

  41. Iwata M (2015) Subjective evaluation of atmosphere of environment under LED street lights using different correlated color temperature. J Illumin Eng Inst Jpn 99(9):525

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Natural Science Foundation of Hubei Provincial No.2014CFB552; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials of China No.000-01647909.

Author information

Authors and Affiliations

Authors

Contributions

Fang-Chang Tsai conceived the research, designed the experiments and co-wrote the paper. Bo Ruan and Huan-Li Liu co-wrote the paper, too. Bo Ruan and Huan-Li Liu prepared and formulated the materials and carried out the PXRD and specific surface area and pore size data and their analysis. Lei Xie, Hui Ding, Ya Zhang, Jin Wu and Zhe Huang performed the structural analyses and reaction mechanism. Bo Ruan and Huan-Li Liu carried out and analyzed the fluorescence emission spectrum and adsorption experiment. Dean Shi and Tao Jiang conceived the research, designed the experiments. All the authors discussed the results and contributed to writing the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Fang-Chang Tsai.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• After functionalization, the Zr-based metal organic frameworks (Zr-MOFs) have fluorescence properties based on their strong adsorption capacity, which can be implemented in cell dye and laser materials.

• The adsorption capacity can be achieved by controlling the porosity of the material, a greater porosity ensures a stronger adsorption capacity and fluorescence.

• Moreover, sulforhodamine B (SRB)@Zr-MOFs mainly emits blue-violet light and features adjustable color temperature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, B., Liu, HL., Xie, L. et al. The Fluorescence Property of Zirconium-Based MOFs Adsorbed Sulforhodamine B. J Fluoresc 30, 427–435 (2020). https://doi.org/10.1007/s10895-020-02531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02531-0

Keywords

Navigation