Skip to main content
Log in

Orange-Red Fluorescent (Partially Rigidified) Donor-π-(rigidified)-Acceptor System – Computational Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

D-π-A chromophore derived coumarins are studied using “DFT and TD-DFT” to compute vertical excitation as well as NLO properties using “global hybrid” (GH) functionals B3LYP and BHandHLYP and “range separated hybrid” (RSH) functionals CAM B3LY’, wB97, wB97X, and wB97XD with basis set 6–311++G(d,p) and “correlation consistence polarized valence double and triple zeta” cc-pVDZ and cc-pVTZ respectively in the gas phase and two solvents, N,N-Dimethylformamide (DMF) and ethyl acetate (EA). The trends in absorption and emission values calculated by TD-DFT using all the above mentioned functional and basis sets were studied and it was observed that the trends seen in the computed parameters using B3LYP, BHandHLYP and CAM B3LYP are in good agreement with the trends in experimental values. DFT calculations were performed to determine “static dipole moment” (μ), “linear polarizability” (α), “first order hyperpolarizability” (β0), “second order hyperpolarizability” (γ). We have calculated the mean average errors in dipole moment, linear polarizability, first and second hyperpolarizability and vertical excitation. We have observed large values of ‘first order hyperpolarizability’ (301–938 × 10^-30 e.s.u) and ‘second order hyperpolarizability’ (684–2498 × 10^-34) and they can act as good nonlinear optical materials. Also, vibrational contribution indicates the red shifted absorption and emission in 2c. They show higher values of electrophilicity index which indicates the stability and reactivity of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jen AK, Rao VP, Wong KY, Drost KJ (2000) Functionalized Thiophenes : second-order nonlinear optical materials. 90–92

  2. Janaki A, Balachandran V, Lakshmi A (2013) First order molecular hyperpolarizabilities and intramolecular charge transfer from vibrational spectra of NLO material: 2,6-dichloro-4-nitroaniline. Indian J Pure Appl Phys 51:601–614

    CAS  Google Scholar 

  3. Garrett K, Sosa Vazquez X, Egri SB, Wilmer J, Johnson LE, Robinson BH, Isborn CM (2014) Optimum exchange for calculation of excitation energies and Hyperpolarizabilities of organic electro-optic Chromophores. J Chem Theory Comput 10:3821–3831. https://doi.org/10.1021/ct500528z

    Article  CAS  PubMed  Google Scholar 

  4. Kinnibrugh TL, Salman S, Getmanenko YA, Coropceanu V, Porter WW 3rd, Timofeeva TV, Matzger AJ, Brédas JL, Marder SR, Barlow S (2009) Dipolar second-order nonlinear optical Chromophores containing Ferrocene, Octamethylferrocene, and Ruthenocene donors and strong π-acceptors: crystal structures and comparison of π-donor strengths. Organometallics 28:1350–1357. https://doi.org/10.1021/om800986s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meyers F, Marder SR, Pierce BM, Brédas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α,β, and γ.) and bond length alternation. J Am Chem Soc 116:10703–10714. https://doi.org/10.1021/ja00102a040

    Article  CAS  Google Scholar 

  6. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., .beta., and .gamma.) and bond length alternation. J Am Chem Soc 116:10703–10714. https://doi.org/10.1021/ja00102a040

    Article  CAS  Google Scholar 

  7. Mao SSH, Ra Y, Guo L et al (1998) Progress toward device-quality second-order nonlinear optical materials. 1. Influence of composition and processing conditions on nonlinearity, temporal stability, and optical loss. Chem Mater 10:146–155. https://doi.org/10.1021/cm9702833

    Article  CAS  Google Scholar 

  8. Devlin FJ, Stephens PJ, Cheeseman JR, Frisch MJ (1997) Ab initio prediction of vibrational absorption and circular Dichroism spectra of chiral natural products using density functional theory: α-Pinene. J Phys Chem A 101:9912–9924. https://doi.org/10.1021/jp971905a

    Article  CAS  Google Scholar 

  9. Presti D, Paris C (2017) Quantum computational methodologies for the study of molecular crystals to cite this version : HAL Id : tel-01279921 quantum computational methodologies for the study of molecular crystals thesis presented by

  10. Savin A, Flad H-J (1995) Density functionals for the Yukawa electron-electron interaction. Int J Quantum Chem 56:327–332. https://doi.org/10.1002/qua.560560417

    Article  CAS  Google Scholar 

  11. Brémond É, Savarese M, Su NQ, Pérez-Jiménez ÁJ, Xu X, Sancho-García JC, Adamo C (2016) Benchmarking density Functionals on structural parameters of small−/medium-sized organic molecules. J Chem Theory Comput 12:459–465. https://doi.org/10.1021/acs.jctc.5b01144

    Article  CAS  PubMed  Google Scholar 

  12. Peterson KA, Dunning TH (2002) Accurate correlation consistent basis sets for molecular core–valence correlation effects: the second row atoms Al–Ar, and the first row atoms B–ne revisited. J Chem Phys 117:10548–10560. https://doi.org/10.1063/1.1520138

    Article  CAS  Google Scholar 

  13. Seferoğlu N, Toprakçıoğlu G (2019) Detailed theoretical characterization of azo chromophores containing dicyanomethylene acceptor and various coupling components by DFT. J Mol Struct 1181:360–372. https://doi.org/10.1016/j.molstruc.2018.12.080

    Article  CAS  Google Scholar 

  14. Barberá J, Clays K, Giménez R et al (1998) Versatile optical materials: fluorescence, non-linear optical and mesogenic properties of selected 2-pyrazoline derivatives. J Mater Chem 8:1725–1730. https://doi.org/10.1039/a802070a

    Article  Google Scholar 

  15. Miniewicz A, Palewska K, Sznitko L, Lipinski J (2011) Single- and two-photon excited fluorescence in organic nonlinear optical single crystal 3-(1,1-Dicyanoethenyl)-1-phenyl-4,5-dihydro-1 H -pyrazole. J Phys Chem A 115:10689–10697. https://doi.org/10.1021/jp204435s

    Article  CAS  PubMed  Google Scholar 

  16. Paschoal D, Dos Santos HF (2016) Computational protocol to predict hyperpolarizabilities of large π-conjugated organic push–pull molecules. Org Electron 28:111–117. https://doi.org/10.1016/j.orgel.2015.10.019

    Article  CAS  Google Scholar 

  17. Yuan L, Lin W, Zheng K, He L, Huang W (2013) Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 42:622–661. https://doi.org/10.1039/C2CS35313J

    Article  CAS  PubMed  Google Scholar 

  18. Karakaş A, Elmali A, Ünver H, Svoboda I (2004) Nonlinear optical properties of some derivatives of salicylaldimine-based ligands. J Mol Struct 702:103–110. https://doi.org/10.1016/j.molstruc.2004.06.017

    Article  CAS  Google Scholar 

  19. METZLER CM, CAHILL A, METZLER DE (1980) cheminform abstract: equilibriums and absorption spectra of schiff bases. Chem Informationsd 11:6075–6082. https://doi.org/10.1002/chin.198050089

    Article  Google Scholar 

  20. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides †. J Phys Chem B 105:6474–6487. https://doi.org/10.1021/jp003919d

    Article  CAS  Google Scholar 

  21. Blanchard-Desce M, Alain V, Bedworth PV et al (1997) Large quadratic hyperpolarizabilities with donor–acceptor Polyenes exhibiting optimum bond length alternation: correlation between structure and Hyperpolarizability. Chem - A Eur J 3:1091–1104. https://doi.org/10.1002/chem.19970030717

    Article  CAS  Google Scholar 

  22. Kothavale S, Sekar N (2017) Novel pyrazino-phenanthroline based rigid donor-π-acceptor compounds: a detail study of optical properties, acidochromism, solvatochromism and structure-property relationship. Dyes Pigments 136:31–45. https://doi.org/10.1016/j.dyepig.2016.08.032

    Article  CAS  Google Scholar 

  23. Jiang H, Wu Y, Islam A, Wu M, Zhang W, Shen C, Zhang H, Li E, Tian H, Zhu WH (2018) Molecular engineering of Quinoxaline-based D–A−π–a organic sensitizers: taking the merits of a large and rigid auxiliary acceptor. ACS Appl Mater Interfaces 10:13635–13644. https://doi.org/10.1021/acsami.8b02676

    Article  CAS  PubMed  Google Scholar 

  24. Meng D, Fu H, Fan B et al (2017) Rigid nonfullerene acceptors based on Triptycene-Perylene dye for organic solar cells. Chem - An Asian J 12:1286–1290. https://doi.org/10.1002/asia.201700440

    Article  CAS  Google Scholar 

  25. Delgado MCR, Casado J, Hernández V et al (2008) Electronic, optical, and vibrational properties of bridged dithienylethylene-based NLO chromophores. J Phys Chem C 112:3109–3120. https://doi.org/10.1021/jp710459c

    Article  CAS  Google Scholar 

  26. Bhagwat AA, Mohbiya DR, Avhad KC, Sekar N (2018) Viscosity-active D-π-A chromophores derived from benzo[ b ]thiophen-3(2H)-one 1,1-dioxide (BTD): synthesis, photophysical, and NLO properties. Spectrochim Acta Part A Mol Biomol Spectrosc 203:244–257. https://doi.org/10.1016/j.saa.2018.05.101

    Article  CAS  Google Scholar 

  27. Cekavicus B, Vigante B, Rucins M et al (2014) Cyclisation of benzo[b]thiophen-3(2H)-one 1,1-dioxide and 1,3-indanedione into novel methylene bridged polycyclic diazocines and their rearrangement into spirocyclic compounds. Tetrahedron Lett 55:4601–4604. https://doi.org/10.1016/j.tetlet.2014.06.106

    Article  CAS  Google Scholar 

  28. Hu ZY, Fort A, Barzoukas M et al (2004) Trends in optical nonlinearity and thermal stability in electrooptic chromophores based upon the 3-(dicyanomethylene)-2,3-dihydrobenzothiophene-1, 1-dioxide acceptor. J Phys Chem B 108:8626–8630. https://doi.org/10.1021/jp036728u

    Article  CAS  Google Scholar 

  29. Balli MK and H (1989) Novel Dimethinemerocyanine dyes with the (Snlfobutyl)henzothiazole group as donor part of the Chromophor and their aggregation tendency in aqueous solution. Helv Chim Acta 72:295

  30. Yokota K, Hagimori M, Mizuyama N, Nishimura Y, Fujito H, Shigemitsu Y, Tominaga Y (2012) Synthesis, solid-state fluorescence properties, and computational analysis of novel 2-aminobenzo[4,5]thieno[3,2- d ]pyrimidine 5,5-dioxides. Beilstein J Org Chem 8:266–274. https://doi.org/10.3762/bjoc.8.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cekavicus B, Vigante B, Liepinsh E et al (2008) Benzo[b]thiophen-3(2H)-one 1,1-dioxide—a versatile reagent in the synthesis of spiroheterocycles. Tetrahedron 64:9947–9952. https://doi.org/10.1016/j.tet.2008.07.112

    Article  CAS  Google Scholar 

  32. Chen CH, Tang CW (2001) Efficient green organic light-emitting diodes with stericly hindered coumarin dopants. Appl Phys Lett 79:3711–3713. https://doi.org/10.1063/1.1420583

    Article  CAS  Google Scholar 

  33. Liu B, Wang R, Mi W et al (2012) Novel branched coumarin dyes for dye-sensitized solar cells: significant improvement in photovoltaic performance by simple structure modification. J Mater Chem 22:15379. https://doi.org/10.1039/c2jm32333h

    Article  CAS  Google Scholar 

  34. Jones G, Jackson WR, Choi CY, Bergmark WR (1985) Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism J Phys Chem 89:294–300. https://doi.org/10.1021/j100248a024

    Article  CAS  Google Scholar 

  35. Peng M-J, Guo Y, Yang X-F et al (2013) A highly selective ratiometric and colorimetric chemosensor for cyanide detection. Dyes Pigments 98:327–332. https://doi.org/10.1016/j.dyepig.2013.03.024

    Article  CAS  Google Scholar 

  36. Signore G, Nifosì R, Albertazzi L, Storti B, Bizzarri R (2010) Polarity-sensitive Coumarins tailored to live cell imaging. J Am Chem Soc 132:1276–1288. https://doi.org/10.1021/ja9050444

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Zhang C-F, Yang S-H, Yang WC, Yang GF (2014) A Coumarin-based fluorescent probe for selective and sensitive detection of Thiophenols and its application. Anal Chem 86:3037–3042. https://doi.org/10.1021/ac403885n

    Article  CAS  PubMed  Google Scholar 

  38. Tsukamoto K, Shinohara Y, Iwasaki S, Maeda H (2011) A coumarin-based fluorescent probe for Hg2+ and Ag+ with an N′-acetylthioureido group as a fluorescence switch. Chem Commun 47:5073–5075. https://doi.org/10.1039/c1cc10933b

    Article  CAS  Google Scholar 

  39. Sun Y-F, Wang H-P, Chen Z-Y, Duan W-Z (2013) Solid-state fluorescence emission and second-order nonlinear optical properties of Coumarin-based Fluorophores. J Fluoresc 23:123–130. https://doi.org/10.1007/s10895-012-1125-2

    Article  CAS  PubMed  Google Scholar 

  40. Bhagwat AA, Sekar N (2019) Fluorescent 7-substituted Coumarin dyes: Solvatochromism and NLO studies. J Fluoresc 29:121–135. https://doi.org/10.1007/s10895-018-2316-2

    Article  CAS  PubMed  Google Scholar 

  41. Raju BB, Varadarajan TS (1995) Spectroscopic studies of 7-diethylamino-3-styryl coumarins. J Photochem Photobiol A Chem 85:263–267. https://doi.org/10.1016/1010-6030(94)03905-A

    Article  Google Scholar 

  42. Huang S-T, Jian J-L, Peng H-Z et al (2010) The synthesis and optical characterization of novel iminocoumarin derivatives. Dyes Pigments 86:6–14. https://doi.org/10.1016/j.dyepig.2009.10.020

    Article  CAS  Google Scholar 

  43. Moeckli P (1980) Preparation of some new red fluorescent 4-cyanocoumarin dyes. Dyes Pigments 1:3–15. https://doi.org/10.1016/0143-7208(80)80002-7

    Article  CAS  Google Scholar 

  44. Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Ensley TR, Bondar MV, Gerasov AO, Kovtun YP, Shandura MP, Kachkovski AD, Hagan DJ, van Stryland E (2010) Efficient two-photon absorbing acceptor- π -acceptor Polymethine dyes. J Phys Chem 114:6493–6501

    Article  CAS  Google Scholar 

  45. Lanke SK, Sekar N (2016) Coumarin push-pull NLOphores with red emission: Solvatochromic and theoretical approach. J Fluoresc 26:949–962. https://doi.org/10.1007/s10895-016-1783-6

    Article  CAS  PubMed  Google Scholar 

  46. Tathe AB, Sekar N (2016) Red emitting NLOphoric 3-styryl coumarins: experimental and computational studies. Opt Mater (Amst) 51:121–127. https://doi.org/10.1016/j.optmat.2015.11.031

    Article  CAS  Google Scholar 

  47. Avhad KC, Patil DS, Gawale YK et al (2018) Large stokes shifted far-red to NIR-emitting D-π-a Coumarins: combined synthesis, experimental, and computational investigation of spectroscopic and non-linear optical properties. ChemistrySelect 3:4393–4405. https://doi.org/10.1002/slct.201800063

    Article  CAS  Google Scholar 

  48. Shenoy VU, Patel VP, Seshadri S (1989) Disperse dyes derived from 3-Oxo-2,3-dihydrobenzo[b]thiophene-1,1-dioxide and 3[Dicyanomethylene-2,3-dihydrobenzo[b]thiophene-1,1-dioxide. Dyes Pigments 11:37–46

  49. Gieseking RL, Risko C, Brédas J-L (2015) Distinguishing the effects of bond-length alternation versus bond-order alternation on the nonlinear optical properties of π-conjugated Chromophores. J Phys Chem Lett 6:2158–2162. https://doi.org/10.1021/acs.jpclett.5b00812

    Article  CAS  PubMed  Google Scholar 

  50. Velmurugan G, Angeline Vedha S, Venuvanalingam P (2014) Computational evaluation of optoelectronic and photophysical properties of unsymmetrical distyrylbiphenyls. RSC Adv 4:53060–53071. https://doi.org/10.1039/C4RA07809H

    Article  CAS  Google Scholar 

  51. Carthigayan K, Xavier S, Periandy S (2015) HOMO-LUMO, UV, NLO, NMR and vibrational analysis of 3-methyl-1-phenylpyrazole using FT-IR, FT-RAMAN FT-NMR spectra and HF-DFT computational methods. Spectrochim Acta - Part A Mol Biomol Spectrosc 142:350–363. https://doi.org/10.1016/j.saa.2015.02.035

    Article  CAS  Google Scholar 

  52. Demircioğlu Z, Kaştaş ÇA, Büyükgüngör O (2017) X-ray structural, spectroscopic and computational approach (NBO, MEP, NLO, NPA, Fukui function analyses) of (E)-2-((4-bromophenylimino)methyl)-3-methoxyphenol. Mol Cryst Liq Cryst 656:169–184. https://doi.org/10.1080/15421406.2017.1405660

    Article  CAS  Google Scholar 

  53. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  54. Frau J, Glossman-Mitnik D (2018) Molecular reactivity and absorption properties of Melanoidin blue-G1 through conceptual DFT. Molecules 23:559. https://doi.org/10.3390/molecules23030559

    Article  CAS  PubMed Central  Google Scholar 

  55. Lytel R, Mossman S, Crowell E, Kuzyk MG (2017) Exact fundamental limits of the first and second Hyperpolarizabilities. Phys Rev Lett 119:73902. https://doi.org/10.1103/PhysRevLett.119.073902

    Article  Google Scholar 

  56. Kuzyk MG (2006) Fundamental limits of all nonlinear-optical phenomena that are representable by a second-order nonlinear susceptibility. J Chem Phys 125:154108. https://doi.org/10.1063/1.2358973

    Article  CAS  PubMed  Google Scholar 

  57. Pérez-Moreno J, Zhao Y, Clays K, Kuzyk MG (2007) Modulated conjugation as a means for attaining a record high intrinsic hyperpolarizability. Opt Lett 32:59–61. https://doi.org/10.1364/OL.32.000059

    Article  PubMed  Google Scholar 

  58. Kuzyk MG, Pérez-Moreno J, Shafei S (2013) Sum rules and scaling in nonlinear optics. Phys Rep 529:297–398. https://doi.org/10.1016/j.physrep.2013.04.002

    Article  Google Scholar 

  59. Chaitanya K, Hai X, Heron BM, Gabbutt CD (2013) Vibrational spectroscopy vibrational spectra and static vibrational contribution to first hyperpolarizability of naphthopyrans — a combined experimental and DFT study. Vib Spectrosc 69:65–83. https://doi.org/10.1016/j.vibspec.2013.09.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author SBB and AAB are grateful for UGC-SAP fellowship New Delhi, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Ethics declarations

Conflict of Interest

The author declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalekar, S.B., Bhagwat, A.A. & Sekar, N. Orange-Red Fluorescent (Partially Rigidified) Donor-π-(rigidified)-Acceptor System – Computational Studies. J Fluoresc 30, 565–579 (2020). https://doi.org/10.1007/s10895-020-02506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02506-1

Keywords

Navigation