Skip to main content
Log in

Multiplatform Protein Detection and Quantification Using Glutaraldehyde-Induced Fluorescence for 3D Systems

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Glutaraldehyde (GTA) is a dialdehyde used as biological fixative and its interaction with proteins like bovine serum albumin (BSA) has been well described. Additionally, GTA is known to induce fluorescence when interacting with BSA molecules. In this work, it is developed a new sensitive and reproducible method for BSA quantification using GTA crosslinking to endow fluorescence to BSA molecules. This method can be used with standard lab equipment, providing a low cost, fast-tracking and straightforward approach for BSA quantification. Techniques such as confocal laser scanning microscopy (CLSM) and spectrofluorometry are applied for quantitative assessment, and widefield fluorescence microscopy for qualitative assessment. Qualitative and quantitative correlations between BSA content and GTA-induced fluorescence are verified. BSA concentrations as low as 62.5 μg/mL are detected using CLSM. This method can be highly advantageous for protein quantification in three-dimensional hydrogel systems, specially to evaluate protein loading/release in protein delivery or molecular imprinting systems.

Preparation and analysis of glutaraldehyde-induced protein-fluorescence in 3D hydrogels. Alginate-methacrylate hydrogels containing varying amounts of bovine serum albumin (BSA) are prepared by photopolymerization and then incubated in glutaraldehyde solutions. Samples observation is performed using confocal laser scanning microscopy, spectrofluorometry and widefield fluorescence microscopy. Data is processed and retrieves a quantitative correlation between protein content and fluorescence levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sabatini DD, Bensch K, Barrnett RJ (1963) J Cell Biol 17:19

    Article  CAS  Google Scholar 

  2. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) BioTechniques 37:790

    Article  CAS  Google Scholar 

  3. Shaimi R, Low Siew C (2016) Prolonged protein immobilization of biosensor by chemically cross-linked glutaraldehyde on mixed cellulose membrane. J Polym Eng 36:655

    Article  CAS  Google Scholar 

  4. Akyilmaz E, Oyman G, Cınar E, Odabas G (2017) Prep Biochem Biotechnol 47:86

    Article  CAS  Google Scholar 

  5. Sargin İ, Arslan G (2016) Desalin Water Treat 57:10664

    Article  CAS  Google Scholar 

  6. Zhang M, Zhang Y, Helleur R (2015) Chem Eng J 264:56

    Article  CAS  Google Scholar 

  7. Aftab K, Akhtar K, Jabbar A (2014) Ecol Eng 73:319

    Article  Google Scholar 

  8. Lindén JB, Larsson M, Kaur S, Nosrati A, Nydén M (2016) J Appl Polym Sci 133 n/a

  9. Wang W, Jin X, Zhu Y, Zhu C, Yang J, Wang H, Lin T (2016) Carbohydr Polym 140:356

    Article  CAS  Google Scholar 

  10. Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G (2014) Biomaterials 35:4477

    Article  CAS  Google Scholar 

  11. Tamimi E, Ardila DC, Haskett DG, Doetschman T, Slepian MJ, Kellar RS, Vande Geest JP (2015) J Biomech Eng 138:011001

    Article  Google Scholar 

  12. Lu W, Ma M, Xu H, Zhang B, Cao X, Guo Y (2015) Mater Lett 140:1

    Article  CAS  Google Scholar 

  13. Liu Y, An M, Wang L, Qiu H (2014) J Macromol Sci Part B: Phys 53:309

    Article  CAS  Google Scholar 

  14. Amadori S, Torricelli P, Rubini K, Fini M, Panzavolta S, Bigi A (2015) J Mater Sci Mater Med 26:69

    Article  Google Scholar 

  15. Gao S, Yuan Z, Guo W, Chen M, Liu S, Xi T, Guo Q (2017) Mater Sci Eng C 71:891

    Article  CAS  Google Scholar 

  16. Khalily MA, Goktas M, Guler MO (2015) Org Biomol Chem 13:1983

    Article  CAS  Google Scholar 

  17. Habeeb AFSA, Hiramoto R (1968) Arch Biochem Biophys 126:16

    Article  CAS  Google Scholar 

  18. Bowes JH, Cater CW (1966) J R Microsc Soc 85:193

    Article  Google Scholar 

  19. Hopwood D, Allen CR, McCabe M (1970) Histochem J 2:137

    Article  CAS  Google Scholar 

  20. Hardy PM, Nicholls AC, Rydon HN (1976) J Chem Soc Perkin Trans (1):958

  21. Bowes JH, Cater CW (1968) Biochim Biophys Acta 168:341

    Article  CAS  Google Scholar 

  22. Melo RR, Alnoch RC, Vilela AFL, Souza EM, Krieger N, Ruller R, Sato HH, Mateo C (2017) Molecules 22

  23. Rasmussen KE, Albrechtsen J (1974) Histochemistry 38:19

    Article  CAS  Google Scholar 

  24. Han Y, Duan Q, Li Y, Li Y, Tian J (2018) Adv Polym Technol 37:1214

    Article  CAS  Google Scholar 

  25. Gao J, Wu Y, Cui J, Wu X, Meng M, Li C, Yan L, Zhou S, Yang L, Yan Y (2018) J Taiwan Inst Chem Eng 91:468

    Article  CAS  Google Scholar 

  26. Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, Chruszcz M, Minor W (2012) Mol Immunol 52:174

    Article  CAS  Google Scholar 

  27. Ma X, Sun X, Hargrove D, Chen J, Song D, Dong Q, Lu X, Fan TH, Fu Y, Lei Y (2016) Sci Rep 6:19370

    Article  CAS  Google Scholar 

  28. Aston R, Sewell K, Klein T, Lawrie G, Grøndahl L (2016) Eur Polym J 82:1

    Article  CAS  Google Scholar 

  29. Tahtat D, Mahlous M, Benamer S, Khodja AN, Oussedik-Oumehdi H, Laraba-Djebari F (2013) Int J Biol Macromol 58:160

    Article  CAS  Google Scholar 

  30. Lu T, Xiang T, Huang X-L, Li C, Zhao W-F, Zhang Q, Zhao C-S (2015) Carbohydr Polym 133:587

    Article  CAS  Google Scholar 

  31. Chan AW, Whitney RA, Neufeld RJ (2008) Biomacromolecules 9:2536

    Article  CAS  Google Scholar 

  32. Yeom CK, Lee K-H (1998) J Appl Polym Sci 67:209

    Article  CAS  Google Scholar 

  33. Pawar SN, Edgar KJ (2012) Biomaterials 33:3279

    Article  CAS  Google Scholar 

  34. Bronze-Uhle ES, Costa BC, Ximenes VF, Lisboa-Filho PN (2016) Nanotechnol Sci Appl 10:11

    Article  Google Scholar 

  35. Yan J, Wang F, Chen J, Liu T, Zhang T (2016) Int J Police Sci Manag 2016:1

    CAS  Google Scholar 

  36. Taktak NEM, Awad OM, Elfiki SA, El-Ela NEA (2017) J Macromol Sci Part B: Phys 56:359

    Article  Google Scholar 

  37. Kiran Babu SN (2015) J Nanosci Nanotechnol 06

  38. Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH (2000) J Control Release 63:97

    Article  CAS  Google Scholar 

  39. Bio-Rad, "DC™ Protein Assay", http://www.bio-rad.com/en-pt/product/dc-protein-assay. Accessed 20 June 2019

  40. T. Scientific, "Pierce™ BCA Protein Assay Kit", https://www.thermofisher.com/order/catalog/product/23225. Accessed 20 June 2019

  41. Hou Q, Walsh MC, Freeman R, Barry JJ, Howdle SM, Shakesheff KM (2006) J Pharm Pharmacol 58:895

    Article  CAS  Google Scholar 

  42. Lima DS, Tenório-Neto ET, Lima-Tenório MK, Guilherme MR, Scariot DB, Nakamura CV, Muniz EC, Rubira AF (2018) J Mol Liq 262:29

    Article  CAS  Google Scholar 

  43. Wang H, Ying X, Liu J, Li X, Zhang W (2017) J Polym Res:24

Download references

Acknowledgements

The authors would like to acknowledge FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the Project PTDC/BBB-BIO/1889/2014, the doctoral grant SFRH/BD/129855/2017 to Mariana I Neves and the contract to Aureliana Sousa in the framework of the project “Institute for Research and innovation in Health Sciences” (POCI-01-0145-FEDER-007274). Marco Araújo gratefully acknowledges Interreg V-A Spain-Portugal (POCTEP) 2014-2020 and FEDER (0245_IBEROS_1_E) for the Postdoctoral grant.

The authors acknowledge the support of Ricardo Vidal from the Biointerfaces and Nanotechnology i3S Scientific Platform, the Bioimaging i3S Scientific Platform, member of the national infrastructure PPBI - Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122) and Daniela Silva from the Image, Microstructure and Microanalysis Unit (IMCROS) from the Materials Centre of the University of Porto (CEMUP). The authors thank Prof. Nuno Alves from the Centre for Rapid and Sustainable Product Development (CDRSP) of Politécnico de Leiria for the use of the photopolymerization system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aureliana Sousa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Alginate methacrylation protocol, example of Mean Gray Value measurement, statistical analysis for CLSM and spectrofluorometry results, quantifications using protein assay commercial kits, spectrofluorometry preliminary assays and minimum protein levels measured by spectrofluorometry. (DOCX 377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, M.I., Araújo, M., Barrias, C.C. et al. Multiplatform Protein Detection and Quantification Using Glutaraldehyde-Induced Fluorescence for 3D Systems. J Fluoresc 29, 1171–1181 (2019). https://doi.org/10.1007/s10895-019-02433-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02433-w

Keywords

Navigation