Skip to main content
Log in

Novel Water-Soluble Cyclotriphosphazene-Bodipy Conjugates: Synthesis, Characterization and Photophysical Properties

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present work, novel water-soluble cyclotriphosphazene derivatives (3b and 4b) were synthesized by ‘click’ reactions between cyclotriphosphazene derivative with hydrophilic glycol side groups (2) and Bodipy’s (3a and 4a). All newly synthesized compounds (2, 3b and 4b) were characterized by fourier-transform infrared (FTIR), mass and NMR spectroscopy techniques and elemental analysis (EA). The photophysical properties of Bodipy substituted novel cyclotriphosphazenes (3a and 4a) were examined via UV-Vis absorption and fluorescence emission spectroscopy inside water and many organic solvents such as acetone, tetrahydrofuran, dichloromethane, dimethyl sulfoxide, etc., and the results were compared with the each other.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mark JE, Allcock HR, West R (1992) Inorganic polymers. Prentice Hall, Englewood Cliffs

    Google Scholar 

  2. Allcock HR (1972) Phosphorusenitrogen compounds. Academic Press, New York Chapters 6 and 7

    Google Scholar 

  3. Caminade AM, Hameau A, Majoral JP (2016) The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Trans 45:1810–1822

    CAS  PubMed  Google Scholar 

  4. Rao MR, Gayatri G, Kumar A, Sastry GN, Ravikanth M (2009) Cyclotriphosphazene ring as a platform for multiporphyrin assemblies. Chem Eur J 15:3488–3496

    CAS  PubMed  Google Scholar 

  5. Yenilmez-Çifçi G, Senkuytu E, Durmus M, Yuksel F, Kılıç A (2013) Fluorenylidene bridged cyclotriphosphazenes: ‘turn-off’ fluorescence probe for Cu2+ and Fe3+ ions. Dalton Trans 42:14916–14926

    Google Scholar 

  6. Coles SJ, Davies DB, Eaton RJ, Hursthouse MB, Kılıç A, Shaw RA, Uslu A (2006) The structural and stereogenic properties of pentaerythritoxy-bridged cyclotriphosphazene derivatives: spiro–spiro, spiro–ansa and ansa–ansa isomers. Dalton Trans 10:1302–1312

  7. Cosut B (2014) Highly efficient energy transfer in BODIPY–pyrene decorated cyclotriphosphazene. Dyes Pigments 100:11–16

    CAS  Google Scholar 

  8. Bolink HJ, Santamaria SG, Sudhakar S, Zhen C, Sellinger A (2008) Solution processable phosphorescent dendrimers based on cyclic phosphazenes for use in organic light emitting diodes (OLEDs). Chem Commun 5:618–620

  9. Rao MR, Bolligarla R, Butcher RJ, Ravikanth M (2010) Hexa boron-Dipyrromethene Cyclotriphosphazenes: synthesis, crystal structure, and Photophysical properties. Inorg Chem 49:10606–10616

    CAS  PubMed  Google Scholar 

  10. Uslu A, Kılıç A, Güvenaltın Ş (2010) The investigation of structural and thermosensitive properties of new phosphazene derivative bearing glycol and aminoalcohol. Inorg Chim Acta 363:3721–3726

    CAS  Google Scholar 

  11. Uslu A, Kılıç A, Güvenaltın Ş (2010) Structural and thermosensitive properties of novel octopus shape cyclotriphosphazenes. Polyhedron 29:2516–2521

    CAS  Google Scholar 

  12. Luten J, van Steenis JH, van Someren R, Kemmink J, Schuurmans-Nieuwenbroek NME, Koning GA, Crommelin DJA, van Nostrum CF, Hennink WE (2003) Water-soluble biodegradable cationic polyphosphazenes for gene delivery. J Control Release 89:483–497

    CAS  PubMed  Google Scholar 

  13. Wilfert S, Iturmendi A, Schoefberger W, Kryeziu K, Heffeter P, Berger W, Brüggemann O, Teasdale I (2014) Water-soluble, biocompatible polyphosphazenes with controllable and pH-promoted degradation behaviour. J Polym Sci A Polym Chem 52:287–294

    CAS  PubMed  Google Scholar 

  14. Christova D, Ivanova SD, Velichkova RS, Tzvetkova P, Mihailova P, Lakov L, Peshev O (2001) New functionalized cyclotriphosphazenes - synthesis and application in the sol-gel process. Des Monomers Polym 4:329–341

    CAS  Google Scholar 

  15. Selvaraj II, Chaklanobis S, Chandrasekhar V (1998) New lipophilic cyclo- and poly-phosphazenes containing surfactant substituents. Polym Int 46:111–116

    CAS  Google Scholar 

  16. Yenilmez-Çiftçi G, Şenkuytu E, Bulut M, Durmuş M (2015) Novel Coumarin substituted water soluble Cyclophosphazenes as “turn-off” type fluorescence Chemosensors for detection of Fe3+ ions in aqueous media. J Fluoresc 25:1819–1830

    Google Scholar 

  17. Tümay SO, Yıldırım-Sarıkaya S, Yeşilot S (2018) Novel iron(III) selective fluorescent probe based on synergistic effect of pyrene-triazole units on a cyclotriphosphazene scaffold and its utility in real samples. J Lumin 196:126–135

    Google Scholar 

  18. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    CAS  PubMed  Google Scholar 

  19. Ziessel R, Ulrich G, Harriman A (2007) The chemistry of Bodipy: a new El Dorado for fluorescence tools. New J Chem 31:496–501

    CAS  Google Scholar 

  20. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent Bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1112

    CAS  Google Scholar 

  21. Niu S, Massif C, Ulrich G, Renard PY, Romieu A, Ziessel R (2012) Water-soluble red-emitting Distyryl-Borondipyrromethene (BODIPY) dyes for biolabeling. Chem Eur J 18:7229–7242

    CAS  PubMed  Google Scholar 

  22. Zhu S, Zhang J, Janjanam J, Bi J, Vegesna G, Tiwari A, Luo FT, Wie J, Liu H (2013) Highly water-soluble, near-infrared emissive BODIPY polymeric dye bearing RGD peptide residues for cancer imaging. Anal Chim Acta 758:138–144

    CAS  Google Scholar 

  23. Kim J, Kim Y (2014) A water-soluble sulfonate-BODIPY based fluorescent probe for selective detection of HOCl/OCl− in aqueous media. Analyst 139:2986–2989

    CAS  PubMed  Google Scholar 

  24. Chauhan P, Chu K, Yan N, Ding Z (2016) Comparison study of electrochemiluminescence of boron-dipyrromethene (BODIPY) dyes in aprotic and aqueous solutions. J Electroanal Chem 781:181–189

    CAS  Google Scholar 

  25. Bura T, Ziessel R (2011) Water-soluble phosphonate-substituted BODIPY derivatives with tunable emission channels. Org Lett 13(12):3072–3075

    CAS  PubMed  Google Scholar 

  26. Xu J, Qian L, Yue Y, Guo Y, Shao S (2014) A water-soluble BODIPY derivative as a highly selective “turn-on” fluorescent sensor for H2O2 sensing in vivo. Biosens Bioelectron 56:58–63

    CAS  PubMed  Google Scholar 

  27. Hooper N, Beeching LJ, Dyke JM, Morris A, Ogden JS, Dias AA, Costa ML, Barros MT, Cabral MH, Moutinho AMC (2002) A study of the thermal decomposition of 2-Azidoethanol and 2-Azidoethyl acetate by ultraviolet photoelectron spectroscopy and matrix isolation infrared spectroscopy. J Phys Chem 106:9968–9975

    CAS  Google Scholar 

  28. Liu JY, Yeung HS, Xu W, Li X, Ng DKP (2008) Highly efficient energy transfer in Subphthalocyanine−BODIPY conjugates. Org Lett 10:5421–5424

    CAS  PubMed  Google Scholar 

  29. Çetindere S, Çoşut B, Yeşilot S, Durmuş M, Kılıç A (2014) Synthesis and properties of axially BODIPY conjugated subphthalocyanine dyads. Dyes Pigments 101:234–239

    Google Scholar 

  30. Allcock HR, Bender JD, Marford RV, Berda EB (2003) Synthesis and characterization of novel solid polymer electrolytes based on poly(7-oxanorbornenes) with pendent Oligoethyleneoxy-functionalized Cyclotriphosphazenes. Macromolecules 36:3563–3569

    CAS  Google Scholar 

  31. Atilgan S, Ozdemir T, Akkaya EU (2010) Selective Hg(II) sensing with improved stokes shift by coupling the internal charge transfer process to excitation energy transfer. Org Lett 12:4792–4795

    CAS  PubMed  Google Scholar 

  32. Çetindere S, Tümay SO, Kılıç A, Durmuş M, Yeşilot S (2017) Synthesis and physico-chemical properties of cyclotriphosphazene-BODIPY conjugates. Dyes Pigments 139:517–523

    Google Scholar 

  33. Keum D, Kim S, Kim Y (2014) A fluorescence turn-on sensor for the detection of palladium ions that operates through in situ generation of palladium nanoparticles. Chem Commun 50:1268–1270

    CAS  Google Scholar 

  34. Kamkaew A, Burgess K (2015) Aza-BODIPY dyes with enhanced hydrophilicity. Chem Commun 51:10664–10667

    CAS  Google Scholar 

  35. Erten-Ela S, Yilmaz MD, Icli B, Dede Y, Icli S, Akkaya EU (2008) A panchromatic Boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells. Org Lett 10(15):3299–3302

    CAS  PubMed  Google Scholar 

  36. Tümay SO, Yıldırım-Sarıkaya S, Yeşilot S (2018) Novel Iron (III) selective fluorescent probe based on synergistic effect of pyrene-Triazole units on a Cyclotriphosphazene scaffold and its utility in real samples. J Lumin 196:126–135

    Google Scholar 

  37. Uslu A, Tümay SO, Şenocak A, Yuksel F, Özcan E, Yeşilot S (2017) Imidazole/benzimidazole-modified cyclotriphosphazenes as highly selective fluorescent probes for Cu2+: synthesis, configurational isomers, and crystal structures. Dalton Trans 46:9140–9156

    CAS  PubMed  Google Scholar 

  38. Ozay H, Kagit R, Yildirim M, Yesilot S, Ozay O (2014) Novel hexapodal triazole linked to a cyclophosphazene core rhodamine-based chemosensor for selective determination of Hg2+ ions. J Fluoresc 24:1593–1601

    CAS  PubMed  Google Scholar 

  39. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin

    Google Scholar 

  40. Qin W, Baruah M, Sliwa M, van der Auweraer M, De Borggraeve WM, Beljonne D, van Averbeke B, Boens N (2008) Ratiometric, fluorescent BODIPY dye with Aza crown ether functionality: synthesis, Solvatochromism, and metal ion complex formation. J Phys Chem A 112:6104–6114

    CAS  PubMed  Google Scholar 

  41. Okutan E, Tümay SO, Yeşilot S (2016) Colorimetric fluorescent sensors for hemoglobin based on BODIPY dyes. J Fluoresc 26:2333–2343

    CAS  Google Scholar 

  42. Jacques P, Braun AM (1981) Laser flash photolysis of Phthalocyanines in solution and microemulsion. Helvetica Chimicaacta 64(169):1800–1806

    CAS  Google Scholar 

  43. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76:1260–1264

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks the Gebze Technical University (GTU) for the provided financial support (Grant no: BAP 2017-A105-38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seda Çetindere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetindere, S., Okutan, E., Tümay, S.O. et al. Novel Water-Soluble Cyclotriphosphazene-Bodipy Conjugates: Synthesis, Characterization and Photophysical Properties. J Fluoresc 29, 1143–1152 (2019). https://doi.org/10.1007/s10895-019-02424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02424-x

Keywords

Navigation