Skip to main content
Log in

One-pot Synthesis and Photophysical Studies of Α-cycloamino-substituted 5-aryl-2,2'-bipyridines

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A series of α-cycloamine substituted 2,2’-bipyridines 3ae’-3ce’ was obtained via the one-pot approach based on ipso-substitution of a cyano-group in 1,2,4-triazines, followed by aza-Diels–Alder reaction in good yields. Photophysical properties, including fluorosolvatochromism, were studied for 3ae’-3ce’ and were compared with α-unsubstituted 2,2’-bipyridines. In addition, dipole moments differences in ground and excited states were calculated by both Lippert-Mataga equation and DFT studies and were compared to each other. The correlation between the size of cycloamine unit and the dipole moments differences value (based on Lippert-Mataga equation) was observed. In addition charge transfer indices (DCT, Λ, H and t) were calculated to demonstrate influence of molecular structure on the intramolecular charge transfer degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All relevant data are presented in the manuscript and the supplementary file.

References

  1. Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA Approved Pharmaceuticals. J Med Chem 57:10257–10274. https://doi.org/10.1021/jm501100b

    Article  CAS  PubMed  Google Scholar 

  2. Kim MS, Ryu H, Kang DW et al (2012) 2-(3-Fluoro-4-methylsulfonylaminophenyl)propanamides as Potent Transient Receptor Potential Vanilloid 1 (TRPV1) Antagonists: Structure-Activity Relationships of 2-Amino Derivatives in the N -(6-Trifluoromethylpyridin-3-ylmethyl) C-Region. J Med Chem 55:8392–8408. https://doi.org/10.1021/jm300780p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mohamed T, Yeung JCK, Rao PPN (2011) Development of 2-substituted-N-(naphth-1-ylmethyl) and N-benzhydrylpyrimidin-4-amines as dual cholinesterase and Aβ-aggregation inhibitors: Synthesis and biological evaluation. Bioorg Med Chem Lett 21:5881–5887. https://doi.org/10.1016/j.bmcl.2011.07.091

    Article  CAS  PubMed  Google Scholar 

  4. Buckley BJ, Aboelela A, Majed H et al (2021) Systematic evaluation of structure–property relationships and pharmacokinetics in 6-(hetero)aryl-substituted matched pair analogs of amiloride and 5-(N, N-hexamethylene)amiloride. Bioorg Med Chem 37:116116. https://doi.org/10.1016/j.bmc.2021.116116

    Article  CAS  PubMed  Google Scholar 

  5. Zhang F, Bhat S, Gabelli SB et al (2013) Pyridinylquinazolines selectively inhibit human methionine aminopeptidase-1 in Cells. J Med Chem 56:3996–4016. https://doi.org/10.1021/jm400227z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumari A, Singh RK (2020) Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorg Chem 96:103578. https://doi.org/10.1016/j.bioorg.2020.103578

    Article  CAS  PubMed  Google Scholar 

  7. Kireev D, Chrétien J, Raevsky O (1995) Molecular modeling and quantitative structure-activity studies of anti-HIV-1 2-heteroarylquinoline-4-amines. Eur J Med Chem 30:395–402. https://doi.org/10.1016/0223-5234(96)88249-3

    Article  Google Scholar 

  8. Motoyama M, Doan T, Hibner-Kulicka P et al (2021) Synthesis and structure-photophysics evaluation of 2- N -Amino-quinazolines: Small molecule fluorophores for solution and solid state. Chem Asian J 16:2087–2099. https://doi.org/10.1002/asia.202100534

    Article  CAS  PubMed  Google Scholar 

  9. Urch CJ, Salmon R, Lewis T et al (1996) Bicyclic amines as insecticides. WO 1996037494 A

  10. Goeghova M, Zambach W, Muehlebach M et al (2009) Spiroheterocyclic pyrrolidine dione derivatives useful as pesticides. WO 2009049851 A1

  11. Duke SO, Cantrell CL, Meepagala KM et al (2010) Natural toxins for use in pest management. Toxins (Basel) 2:1943–1962. https://doi.org/10.3390/toxins2081943

    Article  CAS  PubMed  Google Scholar 

  12. Meng L, Zhao H, Zhao S et al (2019) Inhibition of yeast-to-hypha transition and virulence of Candida albicans by 2-alkylaminoquinoline derivatives. Antimicrob Agents Chemother 63. https://doi.org/10.1128/AAC.01891-18

  13. Fokas D, Coffen DL, Ryan WJ (1999) Spiro[pyrrolidine-2,3’-oxindole] compounds and methods of use

  14. Bonacorso HG, Rodrigues MB, Iglesias BA et al (2018) New 2-(aryl/heteroaryl)-6-(morpholin-4-yl/pyrrolidin-1-yl)-(4-trifluoromethyl)quinolines: synthesis via Buchwald-Hartwig amination, photophysics, and biomolecular binding properties. New J Chem 42:10024–10035. https://doi.org/10.1039/C8NJ01120F

    Article  CAS  Google Scholar 

  15. Engel-Andreasen J, Shimpukade B, Ulven T (2013) Selective copper catalysed aromatic N-arylation in water. Green Chem 15:336–340. https://doi.org/10.1039/C2GC36589H

    Article  CAS  Google Scholar 

  16. Vabre R, Legraverend M, Piguel S (2014) Synthesis and evaluation of spectroscopic properties of newly synthesized push–pull 6-amino-8-styryl purines. Dyes Pigm 105:145–151. https://doi.org/10.1016/j.dyepig.2014.01.025

    Article  CAS  Google Scholar 

  17. Toche RB, Chavan SN (2014) Synthesis and study the effect of donor-acceptor substituent on fluorescence behavior of thieno[3, 2-c]pyridine derivatives. J Fluoresc 24:285–293. https://doi.org/10.1007/s10895-013-1313-8

    Article  CAS  PubMed  Google Scholar 

  18. Pigulski B, Męcik P, Cichos J, Szafert S (2017) Use of stable amine-capped polyynes in the regioselective synthesis of push-pull thiophenes. J Org Chem 82:1487–1498. https://doi.org/10.1021/acs.joc.6b02685

    Article  CAS  PubMed  Google Scholar 

  19. Nagarasu P, Kundu A, Pitchaimani J et al (2020) Structure controlled solvatochromism and halochromic fluorescence switching of 2,2′-bipyridine based donor–acceptor derivatives. New J Chem 44:14421–14428. https://doi.org/10.1039/D0NJ02560G

    Article  CAS  Google Scholar 

  20. Chen J, Shao C, Wang X et al (2020) Imaging of formaldehyde fluxes in epileptic brains with a two-photon fluorescence probe. Chem Commun 56:3871–3874. https://doi.org/10.1039/D0CC00676A

    Article  CAS  Google Scholar 

  21. Sharma DK, Adams ST, Liebmann KL, Miller SC (2017) Rapid access to a broad range of 6′-substituted firefly luciferin analogues reveals surprising emitters and inhibitors. Org Lett 19:5836–5839. https://doi.org/10.1021/acs.orglett.7b02806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heravi MM, Kheilkordi Z, Zadsirjan V et al (2018) Buchwald-Hartwig reaction: An overview. J Organomet Chem 861:17–104. https://doi.org/10.1016/j.jorganchem.2018.02.023

    Article  CAS  Google Scholar 

  23. Dorel R, Grugel CP, Haydl AM (2019) The Buchwald-Hartwig amination after 25 years. Angew Chem Int Ed 58:17118–17129. https://doi.org/10.1002/anie.201904795

    Article  CAS  Google Scholar 

  24. Wang D, Zhang E, Xu T et al (2015) Sequential C-C, C–O, and C–N bond-forming reaction of methyl (–)-3-dehydroshikimate, malononitrile, and bromoalkanes: simple synthesis of 2-(alkylamino)-3-cyanobenzofurans from a biomass-derived substrate. Synlett 27:287–293. https://doi.org/10.1055/s-0035-1560582

    Article  CAS  Google Scholar 

  25. Thomas S, Roberts S, Pasumansky L et al (2003) Aminoborohydrides 15. The first mild and efficient method for generating 2-(dialkylamino)-pyridines from 2-fluoropyridine. Org Lett 5:3867–3870. https://doi.org/10.1021/ol035430j

    Article  CAS  PubMed  Google Scholar 

  26. Lee M, Rucil T, Hesek D et al (2015) Regioselective control of the S N Ar amination of 5-substituted-2,4-dichloropyrimidines using tertiary amine nucleophiles. J Org Chem 80:7757–7763. https://doi.org/10.1021/acs.joc.5b01044

    Article  CAS  PubMed  Google Scholar 

  27. Khazir J, Mir BA, Chashoo G et al (2020) Synthesis and anticancer activity of N-9- and N-7- substituted 1,2,3 triazole analogues of 2,6-di-substituted purine. Med Chem Res 29:33–45. https://doi.org/10.1007/s00044-019-02456-9

    Article  CAS  Google Scholar 

  28. Pang JH, Kaga A, Chiba S (2018) Nucleophilic amination of methoxypyridines by a sodium hydride–iodide composite. Chem Commun 54:10324–10327. https://doi.org/10.1039/C8CC05979A

    Article  CAS  Google Scholar 

  29. Zhao X, Webster CE (2015) Novel metal complex catalysts and uses thereof

  30. Pang JH, Kaga A, Roediger S et al (2019) Revisiting the Chichibabin reaction: C2 amination of pyridines with a NaH−iodide composite. Asian J Org Chem 8:1058–1060. https://doi.org/10.1002/ajoc.201900094

    Article  CAS  Google Scholar 

  31. Smith AJ, Kalkman ED, Gilbert ZW, Tonks IA (2016) ZnCl 2 capture promotes ethylene polymerization by a salicylaldiminato Ni complex bearing a pendent 2,2′-bipyridine group. Organometallics 35:2429–2432. https://doi.org/10.1021/acs.organomet.6b00485

    Article  CAS  Google Scholar 

  32. Gavlik KD, Sukhorukova ES, Shafran YM et al (2017) 2-Aryl-5-amino-1,2,3-triazoles: New effective blue-emitting fluorophores. Dyes Pigm 136:229–242. https://doi.org/10.1016/j.dyepig.2016.08.015

    Article  CAS  Google Scholar 

  33. Prokhorov AM, Kozhevnikov DN (2012) Reactions of triazines and tetrazines with dienophiles (Review). Chem Heterocycl Compd (N Y) 48:1153–1176. https://doi.org/10.1007/s10593-012-1117-9

    Article  CAS  Google Scholar 

  34. Pabst GR, Sauer J (1999) The new and simple ‘LEGO’ system: Its application to the synthesis of 4-stannyl-, 4-bromo- and branched oligopyridines. Tetrahedron 55:5067–5088. https://doi.org/10.1016/S0040-4020(99)00179-9

    Article  CAS  Google Scholar 

  35. Foster RAA, Willis MC (2013) Tandem inverse-electron-demand hetero-/retro-Diels–Alder reactions for aromatic nitrogen heterocycle synthesis. Chem Soc Rev 42:63–76. https://doi.org/10.1039/C2CS35316D

    Article  CAS  PubMed  Google Scholar 

  36. Kozhevnikov DN, Kozhevnikov VN, Prokhorov AM et al (2006) Consecutive nucleophilic substitution and aza Diels-Alder reaction—an efficient strategy to functionalized 2,2′-bipyridines. Tetrahedron Lett 47:869–872. https://doi.org/10.1016/j.tetlet.2005.12.006

    Article  CAS  Google Scholar 

  37. Savchuk MI, Khasanov AF, Kopchuk DS et al (2019) New Push-Pull fluorophores on the basis of 6-Alkoxy-2,2’-Bipyridines: Rational synthetic approach and photophysical properties. Chem Heterocycl Compd (N Y) 55:554–559. https://doi.org/10.1007/s10593-019-02495-5

    Article  CAS  Google Scholar 

  38. Kopchuk DS, Krinochkin AP, Starnovskaya ES et al (2018) 6-Arylamino-2,2′-bipyridine “push-pull” fluorophores: solvent-free synthesis and photophysical studies. ChemistrySelect 3:4141–4146. https://doi.org/10.1002/slct.201800220

    Article  CAS  Google Scholar 

  39. Savchuk MI, Starnovskaya ES, Shtaitz YK et al (2018) Synthesis of 5-Phenyl-2,2’-bipyridines 6-Substituted with Donor Groups by aza-Diels–Alder Reactions of 5-R-1,2,4-Triazines under High Pressure Conditions. Russ J Gen Chem 88:2213–2215. https://doi.org/10.1134/S1070363218100316

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT

  41. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  42. Kozhevnikov VN, Kozhevnikov DN, Nikitina TV et al (2003) A versatile strategy for the synthesis of functionalized 2,2‘-Bi- and 2,2‘:6‘,2‘ ‘-Terpyridines via Their 1,2,4-Triazine Analogues. J Org Chem 68:2882–2888. https://doi.org/10.1021/jo0267955

    Article  CAS  PubMed  Google Scholar 

  43. Kozhevnikov VN, Shabunina OV, Kopchuk DS et al (2008) Facile synthesis of 6-aryl-3-pyridyl-1,2,4-triazines as a key step toward highly fluorescent 5-substituted bipyridines and their Zn(II) and Ru(II) complexes. Tetrahedron 64:8963–8973. https://doi.org/10.1016/j.tet.2008.06.040

    Article  CAS  Google Scholar 

  44. Reichardt C (2006) Solvents and solvent effects in organic chemistry, 3rd, updated and enlarged edition, 3rd edn. WILEY-VCH Verlag GmbH & Co, KGaA

    Google Scholar 

  45. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358. https://doi.org/10.1021/cr00032a005

    Article  CAS  Google Scholar 

  46. Kosower EM (1958) The effect of solvent on spectra. I. A new empirical measure of solvent polarity: Z-values. J Am Chem Soc 80:3253–3260. https://doi.org/10.1021/ja01546a020

    Article  CAS  Google Scholar 

  47. Kosower EM (1968) Introduction to physical organic chemistry hardcover. John Wiley & Sons

    Google Scholar 

  48. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy, 3rd edn. Springer, US, Boston, MA

    Book  Google Scholar 

  49. Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bull Chem Soc Jpn 29:465–470. https://doi.org/10.1246/bcsj.29.465

    Article  CAS  Google Scholar 

  50. Lippert E (1957) Spektroskopische bestimmung des dipolmomentes aromatischer verbindungen im ersten angeregten singulettzustand. Electro chem 61:962–975

    CAS  Google Scholar 

  51. Zhao YH, Abraham MH, Zissimos AM (2003) Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J Org Chem 68:7368–7373. https://doi.org/10.1021/jo034808o

    Article  CAS  PubMed  Google Scholar 

  52. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506. https://doi.org/10.1021/ct200308m

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation grant # 19–73-10144-P (synthesis and primar photophysical studies), by the Russian Science Foundation grant # 21–13-00304 (fluorosolvatochromic studies), and by the RUDN University Strategic Academic Leadership Program (quantum chemical calculations).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and photophysical studies were performed by M.R.Guda, M.I.Valieva, R.Aluru, A.F.Khasanov, quantum chemical calculations were performed by A.S.Novikov. Data interpretation was performed by A.F.Khasanov, D.S.Kopchuk, O.S.Taniya. Writing—original draft preparation was performed by A.F.Khasanov. Writing—review and editing were performed by D.S.Kopchuk and G.V.Zyryanov. Supervising by B.C.Ranu. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Albert F. Khasanov.

Ethics declarations

Ethics Approval

Not applicable.

Conflicts of Interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3469 KB)

Supplementary file2 (ZIP 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guda, M.R., Valieva, M.I., Kopchuk, D.S. et al. One-pot Synthesis and Photophysical Studies of Α-cycloamino-substituted 5-aryl-2,2'-bipyridines. J Fluoresc 34, 579–586 (2024). https://doi.org/10.1007/s10895-023-03304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03304-1

Keywords

Navigation