Skip to main content
Log in

Carbon Dots Green Synthesis for Ultra-Trace Determination of Ceftriaxone Using Response Surface Methodology

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The present study sought to develop a facile and green synthetic approach for producing fluorescent carbon dots (CDs) from a natural biomass using aqueous extraction of carbonized blue crab shell. Spherical carbon dots (6.00 ± 3.0 nm) exhibited an extended emission range with excellent quantum yield (14.5 ± 3.5%). In order to measure ceftriaxone, we offered a simple and sensitive method, based on fluorescence quenching of carbon dots in plasma and water with recovery values of 94.5–104.1%. Furthermore, with usage of central composite design (CCD) based response surface methodology (RSM); we optimized the effect of different factors. In addition, ANOVA evaluated the accuracy and suitability of quadratic model. Under optimal conditions, fluorescence quenching revealed a sensitive response in the concentration range of 20–1000 nM with the limit of detection 9.0 nM for ceftriaxone. Finally, carbon dots-based fluorescence quenching procedure was able to quantify ceftriaxone in plasma, as well as mineral and tap water. Spiked samples achieved satisfactory efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin FE, Gui C, Wen W, Bao T, Zhang X, Wang S (2016) Dopamine assay based on an aggregation-induced reversed inner filter effect of gold nanoparticles on the fluorescence of graphene quantum dots. Talanta 158:292–298. https://doi.org/10.1016/j.talanta.2016.05.062

    Article  CAS  PubMed  Google Scholar 

  2. Liu S, Tian JQ, Wang L, Zhang YW, Qin XY, Luo YL, Asiri AM, Al-Youbi AO, Sun XP (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of cu(II) ions. Adv Mater 24:2037–2041. https://doi.org/10.1002/adma.201200164

    Article  CAS  PubMed  Google Scholar 

  3. Niu XQ, Liu GS, Li LY, Fu Z, Xu H, Cui FL (2015) Green and economical synthesis of nitrogen-doped carbon dots from vegetables for sensing and imaging applications. RSC Adv 5:95223–95229. https://doi.org/10.1039/C5RA17439B

    Article  CAS  Google Scholar 

  4. Jin H, Gui RJ, Wang YF, Sun J (2017) Carrot-derived carbon dots modified with polyethyleneimine and nile blue for ratiometric two-photon fluorescence turn-on sensing of sulfide anion in biological fluids. Talanta 169:141–148. https://doi.org/10.1016/j.talanta.2017.03.083

    Article  CAS  PubMed  Google Scholar 

  5. Miao H, Wang L, Zhuo Y, Zhou ZN, Yang XM (2016) Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosens Bioelectron 86:83–89. https://doi.org/10.1016/j.bios.2016.06.043

    Article  CAS  PubMed  Google Scholar 

  6. Lina P, Hsieha C, Kung M, Chua L, Huang H, Chen H, Wud D, Kuod C, Hsieh S (2014) Eco-friendly synthesis of shrimp egg-derived carbon dots for fluorescent bioimaging. J Biotechnol 189:114–119. https://doi.org/10.1016/j.jbiotec.2014.08.043

    Article  CAS  Google Scholar 

  7. Zhang Y, Gao Z, Zhang W, Wang W, Chang J, Kai J (2018) Fluorescent carbon dots as nanoprobe for determination of lidocaine hydrochloride. SENSOR ACTUAT B-CHEM 262:928–937. https://doi.org/10.1021/ja062677d

    Article  CAS  Google Scholar 

  8. da Trindade MT, Salgado HRN (2018) A critical review of analytical methods for determination of ceftriaxone sodium. Crit Rev Anal Chem 48(2):95–101. https://doi.org/10.1080/10408347.2017.1398063

    Article  CAS  PubMed  Google Scholar 

  9. Brayfield A, Martindale A (2014) The complete drug reference. Pharmaceutical Press, London

    Google Scholar 

  10. Shah J, Jan MR, Shah S, Khan MN (2013) Development and validation of HPLC method for simultaneous determination of ceftriaxone and Cefaclor in commercial formulations and biological samples. J Mex Chem Soc 57:314–320. https://doi.org/10.1155/2014/278173

  11. Rageh AH, El-Shaboury SR, Saleh GA, Mohamed FA (2010) Spectophotometric method for determination of certain Cephalosporins using 4-Chloro-7-Nitrobenzo-2-Oxa-1, 3-diazole (NBD-cl). Nat Sci 8:828–840. https://doi.org/10.4236/ns.2010.28104

    Article  CAS  Google Scholar 

  12. Pasha C, Narayana B (2008) A simple method for the spectrophotometric determination of Cephalosporins in pharmaceuticals using Variamine blue. Eclet Quím 33:41–46. https://doi.org/10.1590/S0100-46702008000200006

    Article  CAS  Google Scholar 

  13. Saleh GA, Askal HF, Darwish IA, El-Shorbagi AA (2003) Spectroscopic analytical study for the charge-transfer complexation of certain Cephalosporins with Chloranilic acid. Anal Sci 19:281–287. https://doi.org/10.2116/analsci.19.281

    Article  CAS  PubMed  Google Scholar 

  14. Ethiraj R, Thiruvengadam E, Sampath, VS, Vahig A, Raj J (2014) Development and Validation of Stability Indicating Spectroscopic Method for Content Analysis of Ceftriaxone Sodium in Pharmaceuticals. Int Sch Res Notices. https://doi.org/10.1155/2014/278173

  15. Shah J, Jan MR, Shah S (2013) Development and validation of a Spectrofluorimetric method for the quantification of ceftriaxone in pharmaceutical formulations and plasma. Luminescence 28:516–522. https://doi.org/10.1002/bio.2487

    Article  CAS  PubMed  Google Scholar 

  16. Shah J, Jan MR, Shah S, Naeem M (2011) Spectrofluorimetric protocol for ceftriaxone in commercial formulation and human plasma after condensation with formaldehyde and ethylacetoacetate. J Fluoresc 21:2155–2163. https://doi.org/10.1007/s10895-011-0917-0

    Article  CAS  PubMed  Google Scholar 

  17. Karpov VM, Spektor DV, Beklemishev MK (2016) Determination of ceftriaxone by the fluorescence quenching of quantum dots using binding with polyethyleneimine. J Anal Chem 71:519–526. https://doi.org/10.1134/S1061934816050051

    Article  CAS  Google Scholar 

  18. Shahrokhian S, Hosseini-Nassab N, Kamalzadeh Z (2014) Fabrication of an electrochemical sensor based on the electrodeposition of Pt nanoparticles on multiwalled carbon nanotubes film for voltametric determination of ceftriaxone in the presence of lidocaine, assisted by factorial-based response-surface methodology. J SOLID STATE ELECTR 18:77–88. https://doi.org/10.1007/s10008-013-2243-8

    Article  CAS  Google Scholar 

  19. Abolhasani J, Hassanzadeh J (2014) Potassium permanganate-acridine yellow chemiluminescence system for the determination of fluvoxamine, isoniazid and ceftriaxone. Luminescence 29:1053–1058. https://doi.org/10.1002/bio.2659

    Article  CAS  PubMed  Google Scholar 

  20. Chullasat K, Kanatharana P, Bunkoed O (2018) Nanocomposite optosensor of dual quantum dot fluorescence probes for simultaneous detection of cephalexin and ceftriaxone. SENSOR ACTUAT B-CHEM 281:689–697. https://doi.org/10.1016/j.snb.2018.11.003

    Article  CAS  Google Scholar 

  21. Czitrom V (1999) One-factor-at-a-time versus designed experiments. Am Stat 53(2):126–131

    Google Scholar 

  22. Nemati F, Zare-Dorabei R, Hosseini M, Ganjali MR (2018) Fluorescence turn-on sensing of thiamine based on arginine – functionalized graphene quantum dots (Arg-GQDs): central composite design for process optimization. SENSOR ACTUAT B-CHEM 255(2):2078–2085. https://doi.org/10.1016/j.snb.2017.09.009

    Article  CAS  Google Scholar 

  23. Nemati F, Hosseini M, Zare-Dorabei R, Salehnia F, Ganjali MR (2018) Fluorescent turn on sensing of caffeine in food sample based on sulfur-doped carbon quantum dots and optimization of process parameters through response surface methodology. SENSOR ACTUAT B-CHEM 273:25–34. https://doi.org/10.1016/j.snb.2018.05.163

    Article  CAS  Google Scholar 

  24. Mosleh M, Ghoreishi SM, Masoum S, Khoobi A (2018) Determination of quercetin in the presence of tannic acid in soft drinks based on carbon nanotubes modified electrode using chemometric approaches. SENSOR ACTUAT B-CHEM 272:605–611. https://doi.org/10.1016/j.snb.2018.05.163

    Article  CAS  Google Scholar 

  25. Baghi Sefidan S, Eskandari H, Shamkhali AN (2018) Rapid colorimetric flow injection sensing of hypochlorite by functionalized graphene quantum dots. SENSOR ACTUAT B-CHEM 275:339–349. https://doi.org/10.1016/j.snb.2018.08.023

    Article  CAS  Google Scholar 

  26. Hashemi F, Rastegarzadeh S, Pourreza N (2018) Response surface methodology optimized dispersive liquid–liquid microextraction coupled with surface plasmon resonance of silver nanoparticles as colorimetric probe for determination of captopril. SENSOR ACTUAT B-CHEM 256:251–260. https://doi.org/10.1016/j.snb.2017.09.178

    Article  CAS  Google Scholar 

  27. Liu L, Mi Z, Hu Q, Li C, Li X, Feng F (2018) One-step synthesis of fluorescent carbon dots for sensitive and selective detection of hyperin. Talanta 186:315–321. https://doi.org/10.1016/j.talanta.2018.04.065

    Article  CAS  PubMed  Google Scholar 

  28. Huang S, Wang L, Huang C, Xie J, Su W, Sheng J, Xiao Q (2015) A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. SENSOR ACTUAT B-CHEM 221:1215–1222. https://doi.org/10.1016/j.snb.2015.07.099

    Article  CAS  Google Scholar 

  29. Brittain HG (2000) Analytical profiles of drug substances, excipients, and related methodology. Elsevier Academic Press, New York

    Google Scholar 

  30. Chen S, Yu YL, Wang JH (2017) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/j.aca.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  31. Zhao C, Jiao Y, Hu F, Yang Y (2018) Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection. Spectrochim Acta A Mol Biomol Spectrosc 190:360–367. https://doi.org/10.1016/j.saa.2017.09.037

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Gao Z, Zhang W, Wang W, Chang J, Kai J (2018) Fluorescent carbon dots as nanoprobe for determination of lidocaine hydrochloride. SENSOR ACTUAT B-CHEM 262:928–937. https://doi.org/10.1016/j.snb.2018.02.079

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the research laboratories of chemistry in Central Tehran Branch, Islamic Azad University for their support this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. M. Sarrafi.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmahdi, N., Sarrafi, A.H.M. & Larki, A. Carbon Dots Green Synthesis for Ultra-Trace Determination of Ceftriaxone Using Response Surface Methodology. J Fluoresc 29, 887–897 (2019). https://doi.org/10.1007/s10895-019-02400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02400-5

Keywords

Navigation