Skip to main content
Log in

Isophthaloyl-Based Selective Fluorescence Receptor for Zn (II) Ion in Semi-Aqueous Medium

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel Isophthaloyl-based symmetrical (12E,21E)-N1’,N3’-bis(2-hydroxybenzylidene) isophthalohydrazide, receptor (1) was synthesized and characterized using various spectroscopic technique. The reorganization ability of receptor (1) was evaluated in semi-aqueous medium and shows significant enhancement in fluorescence intensity for Zn (II) ion over various metal ions in CH3CN:H2O (1:1, v/v). The 1:2 binding stoichiometry between receptor (1) and Zn (II) ion was established using Job’s plot and the proposed complex structure was calculated by applying Density Functional Theory (DFT) method. The binding constant (Ka) of receptor (1) with Zn (II) ion was established with the Benesi-Hildebrand plot, Scatchard and Connor’s plot and the values are 1.00 × 104 M−1, 1.05× 104 M−1 and 1.05× 104 M−1 respectively. The limit of detection (LOD) and limit of quantification (LOQ) of receptor (1) and Zn (II) ion was 0.292 μM and 0.974 μM respectively. The binding mode was due to photo-induced electron transfer (PET) and the coordination of Zn (II) ion with C = N hydroxyl group of receptor (1). Electrochemical analysis of metal free receptor (1) and with Zn (II) ion also confirmed the formation of complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Gale PA (2001) Anion receptor chemistry highlights from 1999. Coord Chem Rev 213:79–128. https://doi.org/10.1016/S0010-8545(00)00364-7

    Article  CAS  Google Scholar 

  3. Valeur B et al (Eds.) (2001) New trends in fluorescence Spectroscopy_ applications to chemical and life sciences, Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 1)

  4. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling Recognition Events with Fluorescent Sensors and Switches. Chem Rev 97:1515–1566. https://doi.org/10.1021/cr960386p

    Article  PubMed  Google Scholar 

  5. de Silva AP et al (2000) Combining luminescence, coordination and electron transfer for signalling purposes. Coord Chem Rev 205:41–57. https://doi.org/10.1016/S00108545(00)00238-1

    Article  Google Scholar 

  6. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108(5):1517–1549. https://doi.org/10.1021/cr078203u

    Article  CAS  PubMed  Google Scholar 

  7. Frederickson CJ, Suh SW, Koh J-Y, Cha YK, Thompson RB, LaBuda CJ, Balaji RV, Cuajungco MP (2002) Depletion of intracellular zinc from neurons by use of an extracellular Chelator in vivo and in vitro. J Histochem Cytochem 50(12):1659–1662. https://doi.org/10.1177/002215540205001210

    Article  CAS  PubMed  Google Scholar 

  8. Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ (2003) Interdomain zinc site on human albumin. PNAS 100(7):3701–3706. https://doi.org/10.1073/pnas.0436576100

    Article  CAS  PubMed  Google Scholar 

  9. Perales-Calvo J, Lezamiz A, Garcia-Manyes S (2015) The Mechanochemistry of a Structural Zinc Finger. J Phys Chem Lett 6(17):3335–3340. https://doi.org/10.1021/acs.jpclett.5b01371

    Article  CAS  PubMed  Google Scholar 

  10. Xing G, DeRose VJ (2001) Designing metal–peptide models for protein structure and function. Curr Opin Chem Biol 5:196–200. https://europepmc.org/abstract/med/11282347. Accessed Mar 2018

  11. Lim NC, Freake HC, Bruckner C (2004) Illuminating zinc in biological systems. Chem Eur J 11:38–49. https://www.ncbi.nlm.nih.gov/pubmed/15484196. Accessed Mar 2018

  12. Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14(5–6):353–357. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277319/. Accessed Mar 2018

  13. Folin M, Contiero E, Vaselli GM (1994) Zinc content of normal human serum and its correlation with some hematic parameters. Biometals. 7(1):75–79. https://doi.org/10.1007/BF00205198

    Article  CAS  PubMed  Google Scholar 

  14. Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68(suppl):447S–463S. https://www.ncbi.nlm.nih.gov/pubmed/9701160. Accessed Mar 2018

  15. WHO (2003) Zinc in drinking-water. Background document for preparation of WHO guidelines fordrinking-water quality. World Health Organization (WHO/SDE/WSH/03.04/17), Geneva

    Google Scholar 

  16. U.S. EPA,(May 2009) National Primary Drinking Water Regulations. http://www.epa.gov/safewater/ki.PDF. Accessed Mar 2018

  17. Prasad AS (1998) Zinc and immunity. Mol Cell Biochem 188:63–69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277319/. Accessed Mar 2018

  18. Bush AI, Tanzi RE (2002) The galvanization of _-amyloid in Alzheimer’s Disease. PNAS 99(11):7317–7319. https://doi.org/10.1073/pnas.122249699

    Article  CAS  PubMed  Google Scholar 

  19. Larson AA, Kitto KF (1998) J Pharmacol Exp Ther 288(2):759–765. http://jpet.aspetjournals.org/content/288/2/759.short. Accessed Mar 2018

  20. Danscher G, Stoltenberg M (2005) Zinc-specific autometallographic in vivo selenium methods: tracing of zinc-enriched (ZEN) terminals, ZEN pathways, and pools of zinc ions in a multitude of other ZEN cells. J Histochem Cytochem 53(2):141–153. https://doi.org/10.1369/jhc.4R6460.2005

    Article  CAS  PubMed  Google Scholar 

  21. Yörük İ, Deger Y, Mert H, Mert N, Ataseven V (2007) Serum Concentration of Copper, Zinc, Iron, and Cobalt and the Copper/Zinc Ratio in Horses with Equine Herpesvirus-1. Biol Trace Elem Res 118:38–42. https://doi.org/10.1007/s12011-007-0023-y

    Article  CAS  PubMed  Google Scholar 

  22. Bitanihirwe BKY, Cunningham MG (2009) Zinc: The Brain’s Dark Horse bitanihirwe. SYNAPSE 63:1029–1049. https://doi.org/10.1002/syn.20683

    Article  CAS  PubMed  Google Scholar 

  23. Zatta P, Drago D, Bolognin S, Sensi SL (2009) Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci 30(7):346–354. https://doi.org/10.1016/j.tips.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Wang J, Zhang J, Wang W (2015) Molecular simulations of metal-coupled protein folding. Curr Opin Struct Biol 30:25–31. https://doi.org/10.1016/j.sbi.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  25. Burdette SC, Walkup GK, Spingler B, Tsien RY, Lippard SJ (2001) Fluorescent sensors for Zn2+ based on a fluorescein platform:synthesis, properties and intracellular distribution. J Am Chem Soc 123:7831–7841. https://doi.org/10.1021/ja010059l

    Article  CAS  PubMed  Google Scholar 

  26. Maruyama S, Kikuchi K, Hirano T, Urano Y, Nagano T (2002) A novel, cell-permeable, fluorescent probe for Ratiometric imaging of zinc ion. J Am Chem Soc 124:10650–10651. https://doi.org/10.1021/ja026442n

    Article  CAS  PubMed  Google Scholar 

  27. Callan JF, de Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61(36):8551–8588. https://doi.org/10.1016/j.tet.2005.05.043

    Article  CAS  Google Scholar 

  28. Lee DY, Singh N, Kim MJ, Jang DO (2010) Ratiometric fluorescent determination of Zn(II): a new class of tripodalreceptorusing mixed imine and amide linkages. Tetrahedron 66(2010):7965–7969. https://doi.org/10.1016/j.tet.2010.08.024

    Article  CAS  Google Scholar 

  29. Lukowiak B, Vandewalle B, Riachy R, Kerr-Conte J, Gmyr V, Belaich S, Lefebvre J, Pattou F (2001) Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe. J Histochem Cytochem 49(4):519–528. https://www.ncbi.nlm.nih.gov/pubmed/11259455. Accessed Mar 2018

  30. Nimmanon T, Ziliotto S, Morris S, Flanagana L, Taylor KM (2017) Phosphorylation of zinc channel ZIP7 drives MAPK, PI3K and mTOR growth and proliferation signalling. Metallomics 9:471–481. https://www.ncbi.nlm.nih.gov/pubmed/28205653. Accessed Mar 2018

  31. Aulsebrook ML, Graham B, Grace MR, Tuck KL (2014) The synthesis of luminescent lanthanide-based chemosensorsfor the detection of zinc ions. Tetrahedron 70(29):1–6. https://doi.org/10.1016/j.tet.2014.04.078

    Article  CAS  Google Scholar 

  32. Song EJ, Park GJ, Lee JJ, Lee S, Noh I, Kim Y, Kim S-J, Kim C, Harrisond RG (2015) A fluorescence sensor for Zn2+ that also acts as a visible sensor for Co2+ and Cu2+. Sensors Actuators B Chem 213(5):268–275. https://doi.org/10.1016/j.snb.2015.02.094

    Article  CAS  Google Scholar 

  33. Stuart Tobias R (1958) The determination of stability constants of complex inorganic species in aqueous solutions. J Chem Educ 35(12):592–599. https://doi.org/10.1021/ed035p592

    Article  Google Scholar 

  34. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71(8):2703–2707. https://doi.org/10.1021/ja01176a030

    Article  CAS  Google Scholar 

  35. Scatchard G (1949) The attractions of Protelns for small molecules And ions. Ann N Y Acad Sci 51:660–672. https://doi.org/10.1111/j.1749-6632.1949.tb27297.x

    Article  CAS  Google Scholar 

  36. Connors KA (1932) The measurements of molecular complex stability. Wiley, New York, p c1987

    Google Scholar 

  37. MacDougall D, Crummett WB et al (1980) Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry. Anal Chem 52:2242–2249. https://doi.org/10.1021/ac50064a004

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03, revision C.02. Gaussian Inc, Wallingford CT

    Google Scholar 

  39. Santos-Figueroa LE, Moragues ME, Manuela M, Raposo M et al (2012) Synthesis and evaluation of thiosemicarbazones functionalized with furylmoieties as new chemosensors for anion recognition org. Biomol Chem 10:7418–7428. https://doi.org/10.1039/c2ob26200b

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Borhade.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadke, N.B., Patil, A.A., Patil, D.Y. et al. Isophthaloyl-Based Selective Fluorescence Receptor for Zn (II) Ion in Semi-Aqueous Medium. J Fluoresc 29, 837–843 (2019). https://doi.org/10.1007/s10895-019-02385-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02385-1

Keywords

Navigation