Skip to main content
Log in

Sensing of Zn2+ion by N-Furfurylsalicylaldimine Based on CHEF Process†

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The recognition ability of N-Furfurylsalicylaldimine (HL) toward various cations (Pb2+, Hg2+, Ba2+, Cd2+, Ag+, Zn2+, Cu2+, Ni2+, Co2+, K+, Sr2+, and Na+) has been studied by UV–Vis and fluorescence spectroscopy. The compound showed highly selective fluorescence signaling behaviour for Zn2+ ions in methanol-water medium based on CHEF process and is capable of distinguishing Zn2+ from Cd2+ ion. From single crystal X-ray analysis it is revealed that a Zn2+ ion binds two ligand molecules through imine nitrogen and phenolate oxygen atom.

N-Furfurylsalicylaldimine as a selective sensing of Zn2+ ion through CHEF process. The x-ray structure of the receptor-Zn(II) complex shows 2:1 stochiometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. ThomasIII SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  Google Scholar 

  2. Szacilowski K, Macyk W, Matuszek AD, Brindell M, Stochel G (2005) Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 105:2647–2694

    Article  CAS  PubMed  Google Scholar 

  3. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  PubMed  Google Scholar 

  4. Frederickson CJ, Koh J-H, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Neurosci 6:449–462

    Article  CAS  Google Scholar 

  5. Berg JM, Shi YG (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  CAS  PubMed  Google Scholar 

  6. Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    Article  CAS  PubMed  Google Scholar 

  7. Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  CAS  PubMed  Google Scholar 

  8. Spichiger-Keller US (1998) Chemical sensors and biosensors for medical and biological applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  9. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480

    Article  CAS  PubMed  Google Scholar 

  10. Xu Z, Xiao Y, Qian X, Cui J, Cui D (2005) Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org Lett 7:889–892

    Article  CAS  PubMed  Google Scholar 

  11. Gunnlaugsson T, Davis AP, O’Brien JE, Glynn (2002) M fluorescent sensing of pyrophosphate and Bis-carboxylates with charge neutral PET chemosensors. Org Lett 4:2449–2452

    Article  CAS  PubMed  Google Scholar 

  12. Lim NC, Schuster JV, Porto MC, Tanudra MA, Yao L, Freake HC, Bruckner C (2005) Coumarin-based chemosensors for Zinc(II): toward the determination of the design algorithm for CHEF-type and ratiometric probes. Inorg Chem 44:2018–2030

    Article  CAS  PubMed  Google Scholar 

  13. Beer PD (1998) Transition-metal receptor systems for the selective recognition and sensing of anionic guest species. Acc Chem Res 31:71–80

    Article  CAS  Google Scholar 

  14. Nishizawa S, Kato Y, Teramae N (1999) Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor. J Am Chem Soc 121:9463–9464

    Article  CAS  Google Scholar 

  15. Wu J-S, Liu W-M, Zhuang X-Q, Wang F, Wang P-F, Tao S-L, Zhang X-H, Wu S-K, Lee S-T (2007) Fluorescence turn on of coumarinderivatives by metal cations: a new signaling mechanism based on C=N isomerization. Org Lett 9:33–36

    Article  CAS  PubMed  Google Scholar 

  16. Sahana A, Banerjee A, Guha S, Lohar S, Chattopadhyay A, Mukhopadhyay SK, Das D (2012) Highly selective organic fluorescent probe for azide ion: formation of a “molecular ring”. Analyst.137:1544-1546.

  17. Peng X, Wu Y, Fan J, Tian M, Han KJ (2005) Colorimetric and ratiometric fluorescence sensing of fluoride: tuning selectivity in proton transfer. J Org Chem 70:10524–10531

    Article  CAS  PubMed  Google Scholar 

  18. Das S, Guha S, Banerjee A, Lohar S, Sahana A, Das D (2011) 2-(2-Pyridyl) benzimidazole based Co(II) complex as an efficientfluorescent probe for trace level determination of aspartic and glutamic acid in aqueous solution: A displacement approach. Org Biomol Chem 9:7097–7104

    Article  CAS  PubMed  Google Scholar 

  19. Serin JM, Brousmiche DW, Frechet JMJ (2002) A fret-based ultraviolet to near-infrared frequency converter. J Am Chem Soc 124:11848–11849

    Article  CAS  PubMed  Google Scholar 

  20. Majzoub AE, Cadiou C, Olivier ID, Tinant B, Chuburu F (2011) Cyclam-methylbenzimidazole: a Selective OFF-ON Fluorescent Sensor for Zinc. Inorg Chem 50: 4029-4038 and references there in

  21. Song EJ, You JKGR, Park GJ, Kim YKS-J, Kim C, Harrison RG (2013) A single molecule that acts as a fluorescence sensor for zinc and cadmium and a colorimetric sensor for cobalt. Dalton Trans 42:15514–15520

    Article  CAS  PubMed  Google Scholar 

  22. Ganguly A, Paul BK, Ghosh S, Kar S, Guchhait N (2013) Selective fluorescence sensing of Cu(II) and Zn(II) using a new Schiff base-derived model compound: naked eye detection and spectral deciphering of the mechanism of sensory action. Analyst 138:6532–6541

    Article  CAS  PubMed  Google Scholar 

  23. Xiao F, Shen J, Qu J, Jing S, Zhu D-R (2013) A fluorescent sensor with mixed N/O/Se donor atoms for probing Zn(II) ion. Inorg Chem Commun 35:69–71

    Article  CAS  Google Scholar 

  24. Hsieh WH, Wanb C-F, Liao D-J, Wua A-T (2012) A turn-on Schiff base fluorescence sensor for zinc ion. Tetrahedron Lett 53:5848–5851

    Article  CAS  Google Scholar 

  25. Li L, Dang Y-Q, Li H-W, Wang B, Wu Y (2010) Fluorescent chemosensor based on Schiff base for selective detection of zinc(II) in aqueous solution. Tetrahedron Lett 51:618–621

    Article  CAS  Google Scholar 

  26. Kim KB, Kim H, Song EJ, Kim S, Noh I, Kim CA (2013) cap-type Schiff base acting as a fluorescence sensor for zinc(II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aqueous media. Dalton Trans 42:16569–16577

    Article  CAS  PubMed  Google Scholar 

  27. Bhagwat UA, Mukhedkar VA, Mukhedkar AJ (1980) Study of ligand isomeric complexes of N-Furfurylsalicylaldimine. J Chem Soc Dalton Trans:2319

  28. Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2004) Development of a Zinc ion-selective luminescent lanthanidechemosensor for biological applications. J Am Chem Soc 126:12470–12471

    Article  CAS  PubMed  Google Scholar 

  29. Baek NY, Heo CH, Lim CS, Masanta G, Cho BR, Kim HM (2012) A highly sensitive two-photon fluorescent probe for mitochondrial zinc ions in living tissue. Chem Commun 48:4546–4548

    Article  CAS  Google Scholar 

  30. (a) Kubo Y, Kato M, Y Misawa, Tokita S (2004) A fluorescence-active 1,3-bis(isothiouronium)-derived naphthalene exhibiting versatile binding modes toward oxo anions in aqueous MeCN solution: new methodology for sensing oxoanions. Tetrahedron Lett 45:3769-3772. (b) Yang MH, Thirupathi P, Lee KH (2011) Selective and Sensitive Ratiometric Detection of Hg(II) Ions Using a Simple Amino Acid Based Sensor. Org Lett 13:5028-5031

  31. Morris JV, Mahaney MA, Huber JR (1976) Fluorescence quantum yield determinations. 9, l0-diphenylanthracene as a reference standard in different solvents. J Phys Chem 80(9):969–974

    Article  CAS  Google Scholar 

  32. Aligent (ed) (2010) CrysAlis PRO. Agilent Technologies Ltd, Yarnton

    Google Scholar 

  33. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by CSIR, New Delhi, India [No. 01(2536)/11/EMR-II]. S.K.J. is thankful to UGC for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Dalai.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary data

CCDC 945929 contains the supplementary crystallographic data for 1. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk. (DOCX 535 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, S.K., Bera, M., Puschmann, H. et al. Sensing of Zn2+ion by N-Furfurylsalicylaldimine Based on CHEF Process†. J Fluoresc 24, 1245–1251 (2014). https://doi.org/10.1007/s10895-014-1407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1407-y

Keywords

Navigation