Skip to main content
Log in

Highly Selective Detection of Cr3 + Ion with Colorimetric & Fluorescent Response Via Chemodosimetric Approach in Aqueous Medium

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

So far, very few numbers of chemosensors for Cr3+ ion have been reported. However, the main drawback of reported receptors are the lack of selectivity and other trivalent cations such as Fe3+, Al3+ and anions like F and OAc frequently interfere with such assays. This paper present the synthesis, characterization & sensor studies of Schiff base containing naphthalene moiety which selectively detect Cr3+ ion by chemodosimetric approach. Using FT-IR, 1H NMR, 13C NMR and ESI mass spectroscopic techniques the probe was characterized. This receptor exhibit more selectivity and sensitivity towards Cr3+ than other divalent and trivalent cations like Mn2+, Zn2+, Co2+, Ni2+, Cd2+, Cu2+, Hg2+, Fe3+, and Al3+ ions. After the addition of chromium ion the receptor get change from yellow to colorless in aqueous medium. But no color change was observed on the addition of other metal ions. Using UV-Vis and PL studies, it was confirmed that the selective hydrolysis of imine group of receptor by Cr3+ ions takes place with high fluorescence enhancement that is corresponding to 1-naphthylamine. Receptor acts as selective chemodosimeter for Cr3+ ions with 2:1 stoichiometry and micro molar detection limit. This chemodosimetric approach was applied successfully for bio-imaging of HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. Johnson J (1998) Mercury summit planned. Chem Eng News 76:22–23

    Article  Google Scholar 

  2. Carapuca HM, Monterroso SCC, Rocha LS, Duarte AC (2004) Simultaneous determination of copper and lead in seawater using optimised thin-mercury film electrodes in situ plated in thiocyanate media. Talanta 64:566–569

    Article  PubMed  CAS  Google Scholar 

  3. Honda K, Sahrul M, Hidaka H, Tatsakana R (1983) Organ and tissue distribution of heavy metals, and their growth-related changes in Antarctic fish. Agric Biol Chem 47:2521–2531

    CAS  Google Scholar 

  4. Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  PubMed  CAS  Google Scholar 

  5. Goswami S, Ghosh UC (2005) Studies on adsorption behaviour of Cr (VI) onto synthetic hydrous stannic oxide. Water SA 31:597–600

    CAS  Google Scholar 

  6. Deng G, Wu K, Cruce AA, Bowman MK, Vincent JB (2015) Binding of trivalent chromium to serum transferring is sufficiently rapid to be physiologically relevant. J Inorg Biochem 143:48–55

    Article  PubMed  CAS  Google Scholar 

  7. Peng M, Yang XP (2015) Controlling diabetes by chromium complexes: the role of the ligands. J Inorg Biochem 146:97–103

    Article  PubMed  CAS  Google Scholar 

  8. Codd R, Irwin JA, La PA (2003) Sialoglycoprotein and carbohydrate complexes in chromium toxicity. Curr Opin Chem Biol 7:213–219

    Article  PubMed  CAS  Google Scholar 

  9. Di Bona KR, Love S, Rhodes NR, McAdory D, Halder Sinha S, Kent N, Kent J, Strickland J, Wilson A, Beaird J, Ramage J, Rasco JF, Vincent JB (2011) Chromium is not an essential trace element for mammals: effects of a “low-chromium” diet. J Biol Inorg Chem 16:381–390

    Article  PubMed  CAS  Google Scholar 

  10. McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109:4780–4827

    Article  PubMed  CAS  Google Scholar 

  11. Panda SK (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol 164:1419–1428

    Article  PubMed  CAS  Google Scholar 

  12. Latva S, Jokiniemi J, Peraniemi S, Ahlgren M (2003) Separation of picogram quantities of Cr(III) and Cr(VI) species in aqueous solutions and determination by graphite furnace atomic absorption spectrometry. J Anal At Spectrom 18:84–86

    Article  CAS  Google Scholar 

  13. Kovacik J, Babula P, Klejdus B, Hedbavny J (2013) Chromium uptake and consequences for metabolism and oxidative stress in chamomile plants. J Agric Food Chem 61:7864–7873

    Article  PubMed  CAS  Google Scholar 

  14. Brose DA, James BR (2010) Oxidation− reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones. Environ Sci Technol 44:9438–9444

    Article  PubMed  CAS  Google Scholar 

  15. Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant. Soil 249:139–156

    CAS  Google Scholar 

  16. Balan C, Donia B, Macoveanu M (2009) Studies on chromium (III) removal from aqueous solutions by sorption on sphagnum moss peat. J Serbian Soc 74:953–964

    Article  CAS  Google Scholar 

  17. Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4:168–175

    Article  PubMed  CAS  Google Scholar 

  18. Deng J, Yu P, Yang LL, Mao L (2013) Competitive coordination of Cu2+ between cysteine and pyrophosphate ion toward sensitive and selective sensing of pyrophosphate ion in synovial fluid of arthritis. Anal Chem 85:2516–2522

    Article  PubMed  CAS  Google Scholar 

  19. Chen W, Li Q, Zheng W, Hu F, Zhang G, Wang Z, Zhang D, Jiang X (2014) Identification of bacteria in water by the fluorescent array. Angew 126:13954–13959

    Article  Google Scholar 

  20. Lim NC, Schuster JV, Porto MC, Tanudra MA, Yao L, Freake HC, Bruckner C (2005) A ratiometric and on–off fluorescent chemosensor for highly selective detection of Cr3+ ion based on an ICT mechanism. Inorg Chem 44:2018–2030

    Article  PubMed  CAS  Google Scholar 

  21. Zhou Z, Yu M (2008) FRET-based sensor for imaging chromium (III) in living cells. Chem Commun 29:3387–3389

    Article  CAS  Google Scholar 

  22. Huang X, Fan C, Wang Z, Zhan X, Pei M, Lu Z (2015) Ratiometric and on-off fluorescent chemosensor for highly selective detection of Cr3+ ion based on an ICT mechanism. Inorg Chem Commun 57:62–65

    Article  CAS  Google Scholar 

  23. Gupta VK, Mergu N, Singh AK (2015) Rhodamine-derived highly sensitive and selective colorimetric and off-on optical chemosensors for Cr3+. Sens Actuator B- Chem 220:420–432

    Article  CAS  Google Scholar 

  24. Hu X, Chai J, Liu Y, Liu B, Yang B (2016) Chromium (III) from chromium(VI) in cells by a fluorescent sensor. Spectrochim. Acta Part A 153:505–509

    Article  CAS  Google Scholar 

  25. Sheng H, Meng X, Ye W, Feng Y, Sheng H (2014) A water-soluble fluorescent probe for Fe(III): improved selectivity over Cr(III). Sens. Actuator B- Chem 195:534–539

    Article  CAS  Google Scholar 

  26. Mao J, Wang L, Dou W, Tang X, Yan Y, Liu W (2007) Tuning the selectivity of two Chemosensors to Fe(III) and Cr(III). Org Lett 9:4567–4570

    Article  PubMed  CAS  Google Scholar 

  27. Xie P, Guo F, Xiao Y, Jin Q, Yao D, Huang Z (2013) A fluorescent chemosensor based on rhodamine for Cr3+ in red spectral region in aqueous solutions and living cells. J Lumin 140:45–50

    Article  CAS  Google Scholar 

  28. Sunnapu O, Kotla NG, Maddiboyina B (2017) Rhodamine based effective chemosensor for chromium(III) and their application in live cell imaging. Sens. Actuator B-Chem 246:761–768

    Article  CAS  Google Scholar 

  29. Jung JY, Han SJ, Chun J, Lee C, Yoon J (2012) New thiazolothiazole derivatives as fluorescent chemosensors for Cr3+ and Al3+. Dyes Pigments 94:423–426

    Article  CAS  Google Scholar 

  30. Thale PB, Sahoo SK (2015) An “off–on” colorimetric chemosensor for selective detection of Al3+, Cr3+ and Fe3+: its application in molecular logic gate. Sens Actuator B-Chem 215:451–458

    Article  CAS  Google Scholar 

  31. Elavarasi M, Sruthi AA, Chandrasekaran N, Mukherjee A (2014) Simple fluorescence-based detection of Cr(III) and Cr(VI) using unmodified gold nanoparticles. Anal Methods 6:9554–9560

    Article  CAS  Google Scholar 

  32. Wang M, Wang J, Xue W, Wu A (2013) A benzimidazole-based ratiometric fluorescent sensor for Cr3+ and Fe3+ in aqueous solution. Dyes Pigments 97:475–480

    Article  CAS  Google Scholar 

  33. Bravo V, Gil S, Costero AM (2012) A new phenanthrene-based bis-oxime chemosensor for Fe(III) and Cr(III) discrimination. Tetrahedron Lett 68:4882–4887

    Article  CAS  Google Scholar 

  34. Janakipriya S, Chereddy NR (2016) Selective interactions of trivalent cations Fe3 +, Al3 + and Cr3+ turn on fluorescence in a naphthalimide based single molecular probe. Spectrochim Acta A Mol Biomol 153:465–470

    Article  CAS  Google Scholar 

  35. Samanta S, Goswami S, Ramesh A, Gopal Das A (2015) A new chemodosimetric probe for the selective detection of trivalent cations in aqueous medium and live cells. J of Photochem and Photobio A: Chem 310:45–51

    Article  CAS  Google Scholar 

  36. Jang YJ, Yeon YH, Yang HY, Noh JY, Hwang IH, Kim C (2013) A colorimetric and fluorescent chemosensor for selective detection of Cr3+ and Al3+. Inorg Chem Commun 33:48–51

    Article  CAS  Google Scholar 

  37. Weerasinghe AJ, Oyeamalu AN, Abebe FA (2016) Rhodamine based turn-on sensors for Ni2+ and Cr3+ in organic media: detecting CN via the metal displacement approach. J Fluoresc 26:891–898

    Article  PubMed  CAS  Google Scholar 

  38. Yang Y, Xue H, Chen L (2013) Colorimetric and highly selective fluorescence “turn-on” detection of Cr3+ by using a simple Schiff Base sensor. Chin J Chem 31:377–380

    Article  CAS  Google Scholar 

  39. Erdemir S, Kocyigi O (2016) Anthracene Excimer-based “turn on” fluorescent sensor for Cr3+ and Fe3+ ions: its application to living cells. Talanta 156:63–69

    Article  CAS  Google Scholar 

  40. Guha S, Lohar S, Banerjee A, Sahana A (2012) Thiophene anchored coumarin derivative as a turn-on fluorescent probe for Cr3+: cell imaging and speciation studies. Talanta 91:18–25

    Article  PubMed  CAS  Google Scholar 

  41. Du W, Shou W (2016) A 1, 8-naphthalimide-based chemosensor with an off-on fluorescence and lifetime imaging response for intracellular Cr3+ and further for S2−. Dyes Pigments 126:279–285

    Article  CAS  Google Scholar 

  42. Saluja P, Kaur N, Singh N (2012) Benzimidazole-based fluorescent sensors for Cr3+ and their resultant complexes for sensing HSO4 and F. Tetrahedron Lett 68:8551–8556

    Article  CAS  Google Scholar 

  43. Saluja P, Sharma H, Kaur N (2012) Benzimidazole-based imine-linked chemosensor: chromogenic sensor for Mg2+ and fluorescent sensor for Cr3+. Tetrahedron Lett 68:2289–2293

    Article  CAS  Google Scholar 

  44. Karak D, Banerjee A, Sahana A (2011) 9-Acridone-4-carboxylic acid as an efficient Cr(III) fluorescent sensor: trace level detection, estimation and speciation studies. J Hazard Mater 188:274–280

    Article  PubMed  CAS  Google Scholar 

  45. Zhou Y, Zhang J, Zhang L, Zhang Q, Ma T, Niu J (2013) A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media. Dyes Pigments 97:148–154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the MHRD, GOI for providing infra structure facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivan Velmathi.

Electronic supplementary material

ESM 1

(DOCX 814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punithakumari, G., Wu, S.P. & Velmathi, S. Highly Selective Detection of Cr3 + Ion with Colorimetric & Fluorescent Response Via Chemodosimetric Approach in Aqueous Medium. J Fluoresc 28, 663–670 (2018). https://doi.org/10.1007/s10895-018-2228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2228-1

Keywords

Navigation