Skip to main content
Log in

Simultaneous Expression of GUS and Actin Genes by Using the Multiplex RT-PCR and Multiplex Gold Nanoparticle Probes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Gene expression analysis is considered to be extremely important in many different biological researches. DNA-based diagnostic test, which contributes to DNA identification, has higher specificity, cost, and speed than some biochemical and molecular methods. In this study, we try to use the novel nano technology approach with Multiplex RT-PCR and Gold nano particular probes (GNPs-probes) in order to get gene expression in Curcumas melons. We used Agrobacterium tumefactions for gene transfer and GUS reporter gene as a reporter. After cDNA synthesis, Multiplex PCR and Multiplex RT-PCR techniques were used. Finally, probes were designed for RNA of GUS and Actin genes, and then the analysis of the gene expression using the probes attached to GNPs was carried out and the color changes in the GNPs were applied. In the following, probes hybridization was checked with DNA between 400 to 700 nm wavelengths and the highest rate was observed in the 550 to 650 nm. The results show that the simultaneous use of GNP-attached detectors and Multiplex RT-PCRcan reduce time and costmore considerably than somelaboratory methods for gene expiration investigation. Additionally, it can be seen thatthere is an increase in sensitivity and specificity of our investigation. Based on our findings, this can bea novel study doneusingMultiplex RT-PCRand unmodified AuNPs for gene transfer and expression detection to plants. We can claim that this assay has a remarkable advantage including rapid, cost-effectiveness, specificity and accuracy to detect transfer and expression genes in plants. Also,we can use this technique from other gene expressionsin many different biology samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tsuji N et al (2001) Selection of an internal control gene for quantitation of mRNA in colonic tissues. Anticancer Res 22(6C):4173–4178

    Google Scholar 

  2. Eisenberg E, Levanon EY (2003) Human housekeeping genes are compact. Trends Genet 19(7):362–365

    Article  PubMed  CAS  Google Scholar 

  3. Greer S, Honeywell R, Geletu M, Arulanandam R, Raptis L (2010) Housekeeping genes; expression levels may change with density of cultured cells. J Immunol Methods 355(1):76–79

    Article  PubMed  CAS  Google Scholar 

  4. Montrichard F, Renard M, Alkhalfioui F, Duval FD, Macherel D (2003) Identification and differential expression of two thioredoxin h isoforms in germinating seeds from pea. Plant Physiol 132(3):1707–1715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Javelle M, Marco CF, Timmermans M (2011) In situ hybridization for the precise localization of transcripts in plants. JoVE (Journal of Visualized Experiments) 57:e3328–e3328

    Google Scholar 

  6. Al-Taweel K, Fernando WD (2011) Differential Gene Expression Is a Promising Tool for Understanding of Host-Pathogen Interactions. The Americas Journal of Plant Science and Biotechnology 5:1–10

    Google Scholar 

  7. Bachem CW et al (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9(5):745–753

    Article  PubMed  CAS  Google Scholar 

  8. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. BioTechniques 39(1):75–85

    Article  PubMed  CAS  Google Scholar 

  9. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284

    Article  PubMed  CAS  Google Scholar 

  10. Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res, 2001. 29(9): p. e45-e45, 445

  11. Prasad D, Vidyarthi AS (2009) DNA based methods used for characterization and detection of food borne bacterial pathogens with special consideration to recent rapid methods. Afr J Biotechnol 8(9)

  12. Chamberlain JS, Gibbs RA, Rainer JE, Nguyen PN, Thomas C (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16(23):11141–11156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE (2000) Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev 13(4):559–570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interf Sci 169(2):59–79

    Article  CAS  Google Scholar 

  15. Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189(1):519–525

    Article  PubMed  CAS  Google Scholar 

  16. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391(3):943–950

    Article  PubMed  CAS  Google Scholar 

  17. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072

    Article  PubMed  CAS  Google Scholar 

  18. Liu SF, Li YF, Li JR, Jiang L (2005) Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates. Biosens Bioelectron 21(5):789–795

    Article  PubMed  CAS  Google Scholar 

  19. Huber M et al (2004) Gold nanoparticle probe-based gene expression analysis with unamplified total human RNA. Nucleic Acids Res 32(18):e137–e137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Xie X, Xu W, Li T, Liu X (2011) Colorimetric detection of HIV-1 Ribonuclease H activity by gold nanoparticles. Small 7(10):1393–1396

    Article  PubMed  CAS  Google Scholar 

  21. Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen JD, Hsu BBY, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci 107(24):10837–10841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu D, Wang Z, Jiang X (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nano 3(4):1421–1433

    CAS  Google Scholar 

  23. Kumar GS et al (2003) Expression of hepatitis B surface antigen in tobacco cell suspension cultures. Protein Expr Purif 32(1):10–17

    Article  CAS  Google Scholar 

  24. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7(2):152–158

    Article  PubMed  CAS  Google Scholar 

  25. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193–195

    Article  PubMed  CAS  Google Scholar 

  27. Schöb H, Kunz C, Meins Jr F (1997) Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol Gen Genet MGG 256(5):581–585

    Article  PubMed  Google Scholar 

  28. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 1(4):19–21

    Article  CAS  Google Scholar 

  29. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 11:55–75

    Article  Google Scholar 

  30. Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, Sadeghizadeh M (2013) Detection of Pseudomonas syringae pathovars by thiol-linked DNA–gold nanoparticle probes. Sensors Actuators B Chem 181:644–651

    Article  CAS  Google Scholar 

  31. Weis JH et al (1992) Detection of rare mRNAs via quantitative RT-PCR. Trends Genet 8(8):263–264

    Article  PubMed  CAS  Google Scholar 

  32. Tichopad, A., et al., Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res, 2003. 31(20): p. e122-e122, 1122

  33. Ray PC, Fortner A, Griffin J, Kim CK, Singh JP, Yu H (2005) Laser-induced fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Chem Phys Lett 414(4):259–264

    Article  CAS  Google Scholar 

  34. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. BioTechniques 23(3):504–511

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their profound gratitude to the research council of Zabol University,for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaser Ghazi or Akbar Vaseghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazi, Y., Vaseghi, A., Ahmadi, S. et al. Simultaneous Expression of GUS and Actin Genes by Using the Multiplex RT-PCR and Multiplex Gold Nanoparticle Probes. J Fluoresc 28, 633–638 (2018). https://doi.org/10.1007/s10895-018-2225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2225-4

Keywords

Navigation