Skip to main content
Log in

Dansyl Based “Turn-On” Fluorescent Sensor for Cu2+ Ion Detection and the Application to Living Cell Imaging

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new “turn-on” fluorescent chemosensor based on dansyl derivative was prepared for Cu2+ ion sensing. Hydroxyl, imine and azomethine groups in Schiff base derived compound 1 were deliberately introduced for facilitating the binding of Cu2+ ion. Of screen metal ions, compound 1 showed a high degree of selectivity toward Cu2+ ion. Other interfering metal ions did not affect the fluorescence intensity of compound 1, except Hg2+ and Fe3+ ions exhibited a significant degree of fluorescence quenching. Upon binding of Cu2+ ion, compound 1 displayed a chelation enhanced fluorescence (CHEF) resulting in increasing of the fluorescence intensity. The molecular optimized geometry indicated the binding ratio between compound 1 and Cu2+ ion at 1:1 with the binding constant of 1.68 × 10− 7 M− 1. The optimized condition for sensing ability of compound 1 with a detection limit of 5 × 10− 7 M was found at the physiological pH 7.2 with the excitation wavelength of 366 nm. Due to no cytotoxicity and good photophysical properties, compound 1 was extended its application for the detection of Cu2+ ion in Vero cells. Compound 1 could be potentially used as an intracellular fluorescent chemosensor for tracking Cu2+ ion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hesse L, Beher D, Masters CL, Multhaup G (1994) The βA4 amyloid precursor protein binding to copper. FEBS Lett 349:109–116

    Article  CAS  PubMed  Google Scholar 

  2. Multhaup G, Schlicksupp A, Hess L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper (II) to copper (I). Science 271:1406–1409

    Article  CAS  PubMed  Google Scholar 

  3. Maynard CJ, Bush AI, Masters CL, Cappai R, Li Q-X (2005) Metals and amyloid-β in Alzheimer’s disease. Int J Exp Path 86:147–159

    Article  CAS  Google Scholar 

  4. Breslow E (1964) Comparison of cupric ion-binding sites in myoglobin derivatives and serum albumin. J Biol Chem 239:3252–3259

    CAS  PubMed  Google Scholar 

  5. Zgirski A, Frieden E (1990) Binding of Cu(II) to non-prosthetic sites in ceruloplasmin and bovine serum albumin. J Inorg Biochem 39:137–148

    Article  CAS  PubMed  Google Scholar 

  6. Luk CK (1971) Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probe. BioChemistry 10:2838–2843

    Article  CAS  Google Scholar 

  7. McClure DS (1952) Spin-orbit interaction in aromatic molecules. J Chem Phys 20:682–686

    Article  CAS  Google Scholar 

  8. Rurack K, Resch-Genger U, Rettig W (1998) Global analysis of time-resolved emission – a powerful tool for the analytical discrimination of chemically similar ZnII and CdII complexes. J Photochem Photobiol A Chem 118:143–149

    Article  CAS  Google Scholar 

  9. Martinez R, Zapata F, Caballero A, Espinosa A, Tarraga A, Molina P (2006) 2-Aza-1,3-butadiene derivatives featuring an anthracene or pyrene unit: highly selective colorimetric and fluorescent signaling of Cu2+ cation. Org Lett 8:3235–3238

    Article  CAS  PubMed  Google Scholar 

  10. Li G-K, Xu Z-X, Chen C-F, Huang Z-T (2008) A highly efficient and selective turn-on fluorescent sensor for Cu2+ ion based on calix[4]arene bearing four iminoquinoline subunits on the upper rim. Chem Commun 1774–1776

  11. Abalos T, Jimenez D, Martines-Manez R, Ros-Lis JV, Royo S, Sancenon F, Soto J, Costero A, Gil M, Parra S (2009) Hg2+ and Cu2+ selective detection using a dual channel receptor based on thiopyrylium scaffoldings. Tetrahedron Lett 50:3885–3888

    Article  CAS  Google Scholar 

  12. Ueno A, Minato S, Suzuki I, Fukushima M, Ohkubo M, Osa T, Hamada F, Murai K (1990) Host–guest sensory system of dansyl-modifled β-cyclodextrin for detecting steroidal compounds by dansyl fluorescence. Chem Lett 19:605–608

    Article  Google Scholar 

  13. Wang Y, Ikeda T, Ueno A, Toda F (1992) Syntheses and molecular recognition abilities of 6-O-, 2-O-, and 3-O-dansyl-γ-cyclodextrins. Chem Lett 5:863–866

    Article  Google Scholar 

  14. Hamada F, Kondo Y, Ito R, Suzuki I, Osa T, Ueno A (1993) Dansyl-modified 7-cyclodextrin as a fluorescent sensor for molecular recognition. J Incl Phenom 15:273–279

    Article  CAS  Google Scholar 

  15. Wang Y, Ikeda T, Ueno A, Toda F (1994) Dansyl-β-cyclodextrins as fluorescent sensors responsive to organic compounds. Bull Chem Soc Jpn 67:1598–1607

    Article  CAS  Google Scholar 

  16. Nakamura M, Ikeda T, Nakamura A, Ikeda H, Ueno A, Toda F (1995) Remarkable molecular recognition of dansyl-modified cyclodextrin dimer. Chem Lett 24:343–344

    Article  Google Scholar 

  17. Nakamura M, Ikeda A, Ise N, Ikeda T, Ikeda H, Toda F, Ueno A (1995) Dansyl-modified β-cyclodextrin with a monensin residue as a hydrophobic, metal responsive cap. J Chem Soc Chem Commun 721–722

  18. Aksuner N, Henden E, Yilmaz I, Cukurovali A (2009) A highly sensitive and selective fluorescent sensor for the determination of copper(II) based on a schiff base. Dyes Pigm 83:211–217

    Article  CAS  Google Scholar 

  19. Chen H, Wu Y, Cheng Y, Yang H, Li F, Yang P (2007) A ratiometric fluorescent sensor for zinc(II) with high selectivity. Inorg Chem Commun 10:1413–1415

    Article  CAS  Google Scholar 

  20. Sousa C, Gameiro P, Freire C, Castro B (2004) Nickel (II) and copper (II) Schiff base complexes bearing benzo-15-crown-5 functionalities as probes for spectroscopic recognition of lanthanide ions. Polyhedron 23:1401–1408

    Article  CAS  Google Scholar 

  21. Bhatt KD, Gupte HS, Makwana BA (2012) Calix receptor edifice; scrupulous turn off fluorescent sensor. J Fluoresc 22:1493–1500

    Article  CAS  PubMed  Google Scholar 

  22. Bhatt KD, Makwana BA, Vyas DJ (2014) Selective recognition by novel calix system: ICT based chemosensor for metal ions. J Lumin 146:450–457

    Article  CAS  Google Scholar 

  23. Liu L, Wang A, Wang G, Li J, Zhou Y (2015) A naphthopyran-rhodamine based fluorescent and colorimetric chemosensor for recognition of common trivalent metal ions and Cu2+ ions. Sens Actuators B 215:388–395

    Article  CAS  Google Scholar 

  24. Yu MM, Li ZX, Wei LH, Wei DH, Tang MS (2008) A 1,8-naphthyridine-based fluorescent chemodosimeter for the rapid detection of Zn2+ and Cu2+. Org Lett 10:5115–5118

    Article  CAS  PubMed  Google Scholar 

  25. Martinez R, Espinosa A, Tarraga A, Molina P (2010) A new bis(pyrenyl)azadiene-based probe for the colorimetric and fluorescent sensing of Cu(II) and Hg(II). Tetrahedron 66:3662–3667

    Article  CAS  Google Scholar 

  26. Franzen S, Ni W, Wang B (2003) Study of the mechanism of electron-transfer quenching by boron-nitrogen adducts in fluorescent sensors. J Phys Chem B 107:12942–12948

    Article  CAS  Google Scholar 

  27. Föll RE, Kramer HEA (1990) Role of charge transfer and spin-orbit coupling in fluorescence quenching. a case study with oxonine and substituted benzenes. J Phys Chem 94:2476–2487

    Article  Google Scholar 

  28. Uyanik I, Oguz M, Bhatti AA, Uyanik A, Yilmaz M (2017) A new piperidine derivatized-Schiff base based “turn-on” Cu2+ chemo-sensor. J Fluoresc 27:791–797

    Article  CAS  PubMed  Google Scholar 

  29. Liu Z-C, Yang Z-Y, Li T-R, Wang B-D, Li Y, Qin D-D, Wang M-F, Yan M-H (2011) An effective Cu (II) quenching fluorescence sensor in aqueous solution and 1D chain coordination polymerframework. Dalton Trans 40:9370–9373

    Article  CAS  PubMed  Google Scholar 

  30. García-Beltrán O, Cassels BK, Pérez C, Mena N, Núñez MT, Martínez NP, Pavez P, Aliaga ME (2014) Coumarin-based fluorescent probes for dual recognition of copper (II) and iron (III) ions and their application in bio-Imaging. Sensors 14:1358–1371

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ghiggino KP, Lee AG, Meech SR, O’Connor DV, Phillips D (1981) Time-resolved emission spectroscopy of the dansyl fluorescence probe. BioChemistry 20:5381–5389

    Article  CAS  PubMed  Google Scholar 

  32. Ghisaidoobe ABT, Chung SJ (2014) Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int J Mol Sci 15:22518–22538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen QY, Chen CF (2005) A new Hg2+ selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown. Tetrahedron Lett 46:165–168

    Article  Google Scholar 

  34. Schonefeld K, Ludwig R, Feller KH (2006) Fluorescence studies of host-guest interaction of a dansyl amide labelled Calix[6]arene. J Fluoresc 16:449–454

    Article  CAS  PubMed  Google Scholar 

  35. Beyeh NK, Aumanen J, Ahman A, Luostarinen M, Mansikkamaki H, Nissinen M, Tommola JK, Rissanen K (2007) Dansylated resorcinarenes. New J Chem 31:370–376

    Article  Google Scholar 

  36. Talanova GG, Talanov VS (2010) Dansyl-containing fluorogenic calixarenes as optical chemosensors of hazardous metal ions: a mini-review. Supramol Chem 22:838–852

    Article  CAS  Google Scholar 

  37. Yan J, Fan L, Qin J, Li C, Yang Z (2016) A novel chromone Schiff-base fluorescent chemosensor for Cd (II) based on C = N isomerization. J Fluoresc 26:1059–1065

    Article  CAS  PubMed  Google Scholar 

  38. Vardhan H, Mehta A, Nath I, Verpoort F (2015) Dynamic imine chemistry in metal–organic polyhedra. RSC Adv 5:67011–67030

    Article  CAS  Google Scholar 

  39. Ozkan G, Kose M, Zengin H, McKee V, Kurtoglu M (2015) A new Salen-type azo-azomethine ligand and its Ni(II), Cu(II) and Zn(II) complexes: synthesis, spectral characterization, crystal structure and photoluminescence studies. Spectrochim Acta A Mol Biomol Spectrosc 150:966–973

    Article  CAS  PubMed  Google Scholar 

  40. Armbruster DA, Tillman MD, Hubbs LM (1994) Limit of detection (LOD)/limit of quantitation (LOQ): comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs. Clin Chem 40:1233–1238

    CAS  PubMed  Google Scholar 

  41. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst 108:1067–1071

    Article  CAS  Google Scholar 

  42. Oter O, Ertekin K, Kihncarslan R, Ulusoy M, Cetinkaya B (2007) Photocharacterization of a novel fluorescent Schiff base and investigation of its utility as an optical Fe3+ sensor in PVC matrix. Dyes Pigm 74:730–735

    Article  CAS  Google Scholar 

  43. Chen Q, Tang S, Jin X, Zou J, Chen K, Zhang T, Xiao X (2009) Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food Chem Toxicol 47:328–334

    Article  CAS  PubMed  Google Scholar 

  44. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108:1067–1071

    Article  CAS  Google Scholar 

  45. Pandey S, Rattan A, Singh M (2011) Evaluation the intermediate results of the QuantiFERON-TB gold in-tube test. Curr Res Tuberc 3:16–19

    Article  Google Scholar 

  46. Chung YM, Raman B, Kim D-S, Ahn KH (2006) Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host–guest adducts. Chem Commun 186–188

  47. O’Connor NA, Sakata ST, Zhu H, Shea KJ (2006) Chemically modified dansyl probes: a fluorescent diagnostic for ion and proton detection in solution and in polymers. Org Lett 8:1581–1584

    Article  PubMed  Google Scholar 

  48. Lee MH, Kim HJ, Yoon S, Park N, Kim JS (2008) Metal ion induced FRET OFF – ON in Tren/Dansyl-appended rhodamine. Org Lett 10:213–216

    Article  CAS  PubMed  Google Scholar 

  49. Alam R, Mistri T, Mondal P, Das D, Mandal SK, Khuda-Bukhsh AR, Ali M (2014) A novel copper (II) complex as a nitric oxide turn-on fluorosensor: intracellular applications and DFT calculation. Dalton Trans 43:2566–2576

    Article  CAS  PubMed  Google Scholar 

  50. Zheng Y, Orbulescu J, Ji X, Andreopoulos FM, Pham SM, Leblanc RM (2003) Development of fluorescent film sensors for the detection of divalent copper. J Am Chem Soc 125:2680–2686

    Article  CAS  PubMed  Google Scholar 

  51. Gonzàlez-Jimènez J, Frutos G, Cayre I (1992) Fluorescence quenching of human serum albumin by xanthines. Biochem Pharmacol 44:824–826

    Article  PubMed  Google Scholar 

  52. Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192

    Article  CAS  Google Scholar 

  53. Wu J-S, Liu W-M, Zhuang X-Q, Wang F, Wang P-F, Tao S-L, Zhang X-H, Wu S-K, Lee S-T (2007) Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on CN isomerization. Org Lett 9:33–36

    Article  CAS  PubMed  Google Scholar 

  54. Wu J, Liu W, Ge J, Zhang H, Wang P-F (2011) Newsensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495

    Article  CAS  PubMed  Google Scholar 

  55. Karstens T, Kobs K (1980) Rhodamine B and Rhodamine 101 as reference substances for fluorescence quantum yield measurement. J Phys Chem 84:1871–1872

    Article  CAS  Google Scholar 

  56. Marsh M, Mcmahon HT (1999) The structural era of endocytosis. Science 9:215–220

    Article  Google Scholar 

  57. Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X (2013) Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep 3:1–8

    Google Scholar 

Download references

Acknowledgements

Mahidol University grant to P.T. (14/2559) and Development and Promotion of Science and Technology Talents Project’s scholarship (DPST) to W.N. are gratefully acknowledged. We are also grateful to the support of S.S. from National Center for Genetic Engineering and Biotechnology (BIOTEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srung Smanmoo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 600 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasomphan, W., Tangboriboonrat, P. & Smanmoo, S. Dansyl Based “Turn-On” Fluorescent Sensor for Cu2+ Ion Detection and the Application to Living Cell Imaging. J Fluoresc 27, 2201–2212 (2017). https://doi.org/10.1007/s10895-017-2161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2161-8

Keywords

Navigation