Skip to main content
Log in

A Colormetric and Fluorescence Probe for Highly Specific Cu2+ and its Application in Live Cell Imaging

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescent probes are intriguing material for ion detection. In this study, 4,4-difluoro-4-bora3a,4a-diaza-s-indacene (BODIPY) containing a dipicolylethylenediamine unit was developed as a colorimetric and fluorescence “turn-off” probe for Cu2+. The probe exhibited higher selectivity for Cu2+ than other common metal ions with a detection limit of 8.49 μM. With increasing Cu2+ concentration, the probe showed a red-shift in the absorption spectrum as well as fluorescence quenching, possibly due to the intramolecular charge transfer effect of the probe–Cu(II) complex. Furthermore, the probe was used for imaging Cu2+ in living cells based on confocal fluorescence imaging. The results show that the probe is an effective tool for detection copper ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data generated or analyzed during this study are included in this published article.

References

  1. Gozzelino R, Arosio P (2016) Iron homeostasis in health and disease. Int J Mol Sci 17:130

    Article  PubMed Central  Google Scholar 

  2. Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946

    Article  CAS  PubMed  Google Scholar 

  3. Daniel KG, Harbach RH, Guida WC, Dou QP (2004) Copper storage diseases: Menkes, Wilsons, and cancer. Front Biosci 9:2652–2662

    Article  CAS  PubMed  Google Scholar 

  4. Valentine JS, Hart PJ (2003) Misfolded CuZnSOD and amyotrophic lateral sclerosis. P Natl Acad Sci 100:3617–3622

    Article  CAS  Google Scholar 

  5. Madsen E, Gitlin JD (2007) Copper and iron disorders of the brain. Annu Rev Neurosci 30:317–337

    Article  CAS  PubMed  Google Scholar 

  6. Kim B-E, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185

    Article  CAS  PubMed  Google Scholar 

  7. Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15:61–76

    Article  CAS  PubMed  Google Scholar 

  8. Millhauser GL (2004) Copper binding in the prion protein. Acc Chem Res 37:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee JC, Gray HB, Winkler JR (2008) Copper (II) binding to α-synuclein, the Parkinson’s protein. J Am Chem Soc 130:6898–6899

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu Y, Liang P, Guo L (2005) Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta 68:25–30

    Article  CAS  PubMed  Google Scholar 

  11. Poursaberi T, Hajiagha-Babaei L, Yousefi M, Rouhani S, Shamsipur M, Kargar-Razi M, Moghimi A, Aghabozorg H, Ganjali MR (2001) The Synthesis of a New Thiophene-Derivative Schiff’s Base and Its Use in Preparation of Copper-Ion Selective Electrodes. Electroanal 13:1513–1517

    Article  CAS  Google Scholar 

  12. Gonzales A, Firmino M, Nomura C, Rocha F, Oliveira P, Gaubeur I (2009) Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry. Anal Chim Acta 636:198–204

    Article  CAS  PubMed  Google Scholar 

  13. Tian Y, Pepelnik R, Fanger H (1990) Multielement analysis of archaic Chinese bronze and antique coins by fast neutron activation analysis. J Radioanal Nucl Chem 139:43–53

    Article  CAS  Google Scholar 

  14. Rao GPC, Seshaiah K, Rao YK, Wang M (2006) Solid phase extraction of Cd, Cu, and Ni from leafy vegetables and plant leaves using amberlite XAD-2 functionalized with 2-hydroxy-acetophenone-thiosemicarbazone (HAPTSC) and determination by inductively coupled plasma atomic emission spectroscopy. J Agric Food Chem 54:2868–2872

    Article  CAS  PubMed  Google Scholar 

  15. Jackson KW, Mahmood TM (1994) Atomic absorption, atomic emission, and flame emission spectrometry. Anal Chem 66:252–279

    Article  Google Scholar 

  16. Pathirathna P, Yang Y, Forzley K, McElmurry SP, Hashemi P (2012) Fast-scan deposition-stripping voltammetry at carbon-fiber microelectrodes: real-time, subsecond, mercury free measurements of copper. Anal Chem 84:6298–6302

    Article  CAS  PubMed  Google Scholar 

  17. Edition F (2011) Guidelines for drinking-water quality. WHO Chronicle 38:104–108

    Google Scholar 

  18. Malavolta M (2018) Mocchegiani E. Trace elements and minerals in Health and Longevity: Springer

  19. Sharma S, Ghosh KS (2021) Recent advances (2017–20) in the detection of copper ion by using fluorescence sensors working through transfer of photo-induced electron (PET), excited-state intramolecular proton (ESIPT) and Förster resonance energy (FRET). Spectrochim Acta A 254:119610

    Article  CAS  Google Scholar 

  20. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172

    Article  CAS  PubMed  Google Scholar 

  21. Kowada T, Maeda H, Kikuchi K (2015) BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem Soc Rev 44:4953–4972

    Article  CAS  PubMed  Google Scholar 

  22. Lu H, Mack J, Yang Y, Shen Z (2014) Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem Soc Rev 43:4778–4823

    Article  CAS  PubMed  Google Scholar 

  23. Yang J, Zhang R, Zhao Y, Tian J, Wang S, Gros CP, Xu H (2021) Red/NIR neutral BODIPY-based fluorescent probes for lighting up mitochondria. Spectrochim Acta A 248:119199

    Article  CAS  Google Scholar 

  24. Sun Y, Yu X-a, Yang J, Gai L, Tian J, Sui X, Lu H (2021) NIR halogenated thieno [3, 2-b] thiophene fused BODIPYs with photodynamic therapy properties in HeLa cells. Spectrochim Acta A 246:119027

    Article  CAS  Google Scholar 

  25. Shi H, Zhao F, Chen X, Yang S, Xing J, Chen H, Zhang R, Liu J (2019) Colorimetric and ratiometric sensors derivated from natural building blocks for fluoride ion detection. Tetrahedron Lett 60:151330

    Article  CAS  Google Scholar 

  26. Liu Z, Jiang Z, Xu C, Chen B, Zhu G (2021) Fluorenyl-difluoroboron-β-diketonates with multi-stimuli fluorescent response behavior and their applications in a thermochromic logic gate device. Dyes Pigm 186:108990

    Article  CAS  Google Scholar 

  27. Teknikel E, Unaleroglu C (2022) 2, 3, 5, 6-Tetrabromo-8-phenyl BODIPY as a fluorometric and colorimetric probe for amines. J Photochem Photobiol A 422:113549

    Article  CAS  Google Scholar 

  28. Zhang X-F, Zhang Y, Xu B (2017) Enhance the fluorescence and singlet oxygen generation ability of BODIPY: Modification on the meso-phenyl unit with electron withdrawing groups. J Photochem Photobiol A 349:197–206

    Article  CAS  Google Scholar 

  29. Wu Q, Wang S, Hao E, Jiao L (2021) Highly selective, colorimetric probes for cyanide ion based on β-formylBODIPY dyes by an unprecedented nucleophilic addition reaction. Spectrochim Acta A 247:119102

    Article  CAS  Google Scholar 

  30. Kubheka G, Sanusi K, Mack J, Nyokong T (2018) Optical limiting properties of 3, 5-dipyrenylvinyleneBODIPY dyes at 532 nm. Spectrochim Acta A 191:357–364

    Article  CAS  Google Scholar 

  31. Praikaew P, Roongcharoen T, Charoenpanich A, Kungwan N, Wanichacheva N (2020) Near-IR aza-BODIPY-based probe for the selective simultaneous detection of Cu2+ in aqueous buffer solutions and its application in biological samples. J Photochem Photobiol A 400:112641

    Article  CAS  Google Scholar 

  32. Xia S, Shen J, Wang J, Wang H, Fang M, Zhou H, Tanasova M (2018) Ratiometric fluorescent and colorimetric BODIPY-based sensor for zinc ions in solution and living cells. Sens Actuators B 258:1279–1286

    Article  CAS  Google Scholar 

  33. Wang J, Xie Y, Wang Z, Song Q (2014) A highly sensitive and selective naked-eye probe for detecting copper ion based on 2, 3-modified Bodipy derivatives. Sens Actuators B 194:149–155

    Article  CAS  Google Scholar 

  34. Sun R, Wang L, Jiang C, Du Z, Chen S, Wu W (2020) A Highly Efficient BODIPY Based Turn-off Fluorescent Probe for Detecting Cu2+. J Fluoresc 30:883–890

    Article  CAS  PubMed  Google Scholar 

  35. More AB, Mula S, Thakare S, Chakraborty S, Ray AK, Sekar N, Chattopadhyay S (2017) An acac-BODIPY dye as a reversible “ON-OFF-ON” fluorescent sensor for Cu2+ and S2-ions based on displacement approach. J Lumin 190:476–484

    Article  CAS  Google Scholar 

  36. Zhang J, Zhao B, Li C, Zhu X, Qiao R (2014) A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging. Sens Actuators B 196:117–122

    Article  CAS  Google Scholar 

  37. Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song Y, Tao J, Wang Y, Cai Z, Fang X, Wang S, Xu H (2021) A novel dual-responsive fluorescent probe for the detection of copper (II) and nickel (II) based on BODIPY derivatives. Inorg Chim Acta 516:120099

    Article  CAS  Google Scholar 

  39. Di L, Yang J, Tang W, Gai L, Zhou Z, Lu H (2020) Nonsymmetric Benzo[a] fused and Thiophene/Thieno [3, 2-b] thiophene [b] fused BODIPYs: Synthesis and Photophysical Properties. J Org Chem 86:601–608

    Article  PubMed  Google Scholar 

  40. Sun Y, Yuan H, Di L, Zhou Z, Gai L, Xiao X, He W, Lu H (2019) Non-symmetric thieno [3, 2-b] thiophene-fused BODIPYs: synthesis, spectroscopic properties and providing a functional strategy for NIR probes. Org Chem Front 6:3961–3968

    Article  CAS  Google Scholar 

  41. Frisch MJ et al (2016) Gaussian 16 Rev. C.01. Wallingford, CT

  42. Ogren PJ, Meetze A, Duer WC (2009) The limit of detection in generalized least-squares calibrations: an example using alprazolam liquid chromatography-tandem mass spectrometry data. J Anal Toxicol 33:129–142

    Article  CAS  PubMed  Google Scholar 

  43. Montville D, Voigtman E (2003) Statistical properties of limit of detection test statistics. Talanta 59:461–476

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21801057, 21871072). Theoretical calculations were performed at the Computational Center for Molecular Design of Organosilicon Compounds, Hangzhou Normal University.

Author information

Authors and Affiliations

Authors

Contributions

Shujun Ren: Methodology, Synthesis and resources. Linting Di: Conceptualization investigation, material preparation. Chang-an Ji: Conceptualization, investigation. Lizhi Gai: Review, supervision writing, writing original draft. Hua Lu: Review, supervision.

Corresponding authors

Correspondence to Lizhi Gai or Hua Lu.

Ethics declarations

Ethical Approval

This article does not contain any studies with human or animal subjects.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1262 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Di, L., Ji, Ca. et al. A Colormetric and Fluorescence Probe for Highly Specific Cu2+ and its Application in Live Cell Imaging. J Fluoresc 32, 2015–2021 (2022). https://doi.org/10.1007/s10895-022-03002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03002-4

Keywords

Navigation