Skip to main content
Log in

Discrimination of Adsorbed Double-Stranded and Single-Stranded DNA Molecules on Surfaces by Fluorescence Emission Spectroscopy Using Acridine Orange Dye

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A sensitive and straightforward method for discriminating between surface-adsorbed double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA), based on analysis of the fluorescence emission spectra of DNAs dyed with the metachromatic dye acridine orange, has been developed. Since the degree of discrimination between dsDNA and ssDNA is dependent on dye-base ratio (as has been shown in early studies of DNAs in solution), a specific, reproducible protocol for obtaining good ss-ds discrimination was needed. We studied the emission spectra for DNAs dyed in-situ on two different surfaces, polymethylmethacrylate and poly-l-lysine, using acridine orange solutions of varying concentrations in either 2-(N-morpholino)ethanesulfonic acid (MES) or Tris–Borate EDTA (TBE) buffers. The method should prove useful in characterizing the efficacy of denaturing techniques applied to surface-adsorbed DNAs in preparation for hybridization, replication and transcription experiments on stretched and aligned DNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armstrong JA, Niven JSF (1957) Fluorescence microscopy in the study of nucleic acids. Nature 180:1235–1236

    Google Scholar 

  2. Bradley DF, Wolf MK (1959) Aggregation of dyes bound to polyanions. Proc Natl Acad Sci U S A 45(7):944–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stone AL, Bradley DF (1961) Aggregation of acridine orange bound to polyannions—stacking tendency of deoxyribonucleic acids. J Am Chem Soc 83(17):3627–3628

    Article  CAS  Google Scholar 

  4. Nash D, Plaut W (1964) On denaturation of chromosomal DNA in situ. Proc Natl Acad Sci U S A 51:731–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bradley DE (1965) Staining of bacteriophage nucleic acids with acridine orange. Nature 205:1230–1230

    Article  CAS  Google Scholar 

  6. Ichimura S, Zama M, Fujita H, Ito T (1969) Nature of strong binding between acridine orange and deoxyribonucleic acid as revealed by equilibrium dialysis and thermal renaturation. Biochim Biophys Acta 190(1):116–125

    Article  CAS  PubMed  Google Scholar 

  7. Ichimura S, Zama M, Fujita H (1971) Quantitative determination of single/stranded sections in DNA using fluorescent probe acridine orange. Biochim Biophys Acta 240(4):485–495

    Article  CAS  PubMed  Google Scholar 

  8. Stockert JC, Lisanti JA (1972) Acridine–orange differential fluorescence of fast– and slow reassociating chromosomal DNA after in-situ DNA denaturation and reassociation. Chromosoma 37:117–130

    Article  CAS  PubMed  Google Scholar 

  9. Pal MK, Ghosh AK (1973) Stoichiometry of metachromatic dye binding by deoxyribonucleic acid. Histochemie 36:29–33.

    Article  CAS  PubMed  Google Scholar 

  10. Ichimura S (1975) Differences in red fluorescence of acridine –orange bound to single–stranded RNA and DNA. Biopolymers 14(5):1033–1047

    Article  CAS  PubMed  Google Scholar 

  11. Darzynkiewicz Z, Traganos F, Sharpless T, Melamed MR (1975) Thermal denaturation of DNA insitu as studied by acridine –orange staining and automated cytofluorometry. Exp Cell Res 90(2):411–428

    Article  CAS  PubMed  Google Scholar 

  12. Darzynkiewicz Z, Evenson D, Kapuscinski J, Melamed MR (1983) Denaturation of RNA and DNA insitu induced by acridine –orange. Exp Cell Res 148(1):31–46

    Article  CAS  PubMed  Google Scholar 

  13. Kapuscinski J, Darzynkiewicz Z, Melamed MR (1983) Interactions of acridine–orange with nucleic–acids—properties of complexes of acridine–orange with single stranded ribonucleic–acid. Adv Biochem Pharmacol 32(24):3679–3694

    Article  CAS  Google Scholar 

  14. Bernas T, Asem EK, Robinson JP, Cook PR, Dobrucki JW (2005) Confocal fluorescence imaging of photosensitized DNA denaturation in cell nuclei. Photochem Photobiol 81(4):960–969

    Article  CAS  PubMed  Google Scholar 

  15. Hotz MA, Gong JP, Traganos F, Darzynkiewicz Z (1994) Flow cytometric detection of apoptosis—comparison of the assays of in-situ DNA–degradation and chromatin changes. Cytometry 15:237–244

    Article  CAS  PubMed  Google Scholar 

  16. Dobrucki J, Darzynkiewicz Z (2001) Chromatin condensation and sensitivity of DNA in situ to denaturation during cell cycle and apoptosis—a confocal microscopy study. Micron 32:645–654

    Article  CAS  PubMed  Google Scholar 

  17. Evenson DP, Darzynkiewicz Z, Melamed MR (1980) Relation of mammalian sperm chromatin heterogeneity to fertility. Science 210:1131–1133

    Article  CAS  PubMed  Google Scholar 

  18. Evenson DP, Jost LK, Baer RK, Turner TW, Schrader SM (1991) Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol 5:115–125

    Article  CAS  PubMed  Google Scholar 

  19. Zini A, Bielecki R, Phang D, Zenzes MT (2001) Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation in fertile and infertile men. Fertil Steril 75:674–677

    Article  CAS  PubMed  Google Scholar 

  20. Liu DY, Baker HWG (2007) Human sperm bound to the zona pellucida have normal nuclear chromatin as assessed by acridine orange fluorescence. Hum Reprod 22:1597–1602

    Article  CAS  PubMed  Google Scholar 

  21. Darzynkiewicz Z, Traganos F, Sharpless T, Melamed MR (1977) Different sensitivity of DNA insitu in interphase and metaphase chromatin to heat denaturation. J Cell Biol 73:128–138

    Article  CAS  PubMed  Google Scholar 

  22. Darzynkiewicz Z, Traganos F, Sharpless T, Melamed MR (1977) Interphase and metaphase chromatin—different stainability of DNA with acridine –orange after treatment at low pH. Exp Cell Res 110:201–214

    Article  CAS  PubMed  Google Scholar 

  23. Darzynkiewicz Z, Traganos F, Carter SP, Higgins PJ (1987) Insitu factors affecting the stability of the DNA helix in interphase nuclei and metaphase chromosomes. Exp Cell Res 176:168–179

    Article  Google Scholar 

  24. Lerman LS (1961) Structural considerations in interaction of DNA and acridines. J Mol Biol 3:18–30

    Article  CAS  PubMed  Google Scholar 

  25. Gersch NF, Jordan DO (1965) Interaction of DNA with aminoacridines. J Mol Biol 13:138–156

    Article  CAS  PubMed  Google Scholar 

  26. Macinnes JW, Uretz RB (1966) Organization of DNA in dipteran polytene chromosomes as indicated by polarized fluorescence microscopy. Science 151:689–691

    Article  CAS  PubMed  Google Scholar 

  27. Neville DM, Davies DR (1966) Interaction of acridine dyes with DNA—an X-ray diffraction and optical investigation. J Mol Biol 17:57–74

    Article  CAS  PubMed  Google Scholar 

  28. Drummond DS, Pritchar NJ, Simpson VF, Peacocke AR (1966) Interaction of aminoacridines with deoxyribonucleic acid—viscosity of complexes. Biopolymers 4:971–987

    Article  CAS  PubMed  Google Scholar 

  29. Rigler R (1966) Microfluorometric characterization of intracellular nucleic acids and nucleoproteins by acridine orange. Acta Physiol Scand Suppl 267:1–122

    PubMed  Google Scholar 

  30. Mauss Y, Chambron J, Daune M, Benoit H (1967) Etude Morphologique Par Diffusion De La Lumiere Du Complexe Forme Par Le Dna Et La Proflavine. J Mol Biol 27:579–589

    Article  CAS  PubMed  Google Scholar 

  31. Blake A, Peacocke AR (1968) Interaction of aminoacridines with nucleic acids. Biopolymers 6:1225–1253

    Article  CAS  PubMed  Google Scholar 

  32. Armstron RW, Strauss UP, Kurucsev T (1970) Interaction between acridine dyes and deoxyribonucleic acid. J Am Chem Soc 92:3174–3181

    Article  Google Scholar 

  33. Sakoda M, Hiromi K, Akasaka K (1972) Kinetic studies on acridine orange DNA interaction—branched mechanism involving intercalation and outside dimerization. J Biochem 71:891–896

    Article  CAS  PubMed  Google Scholar 

  34. Frederic E, Houssier C (1972) Study of interaction of DNA and acridine –orange by various optical methods. Biopolymers 11:2281–2308

    Article  Google Scholar 

  35. Kapuscinski J, Darzynkiewicz Z (1984) Denaturation of nucleic–acids induced by intercalating agents—biochemical and biophysical properties of acridine –orange DNA complexes. J Biomol Struct Dyn 1:1485–1499

    Article  CAS  PubMed  Google Scholar 

  36. Kapuscinski J, Darzynkiewicz Z (1984) Denaturation of nucleic–acids induced by intercalating agents—biochemical and biophysical properties of acridine –orange DNA complexes. J Biomol Struct Dyn 1(6):1485–1489

    Article  CAS  PubMed  Google Scholar 

  37. Kure N, Sano T, Harada S, Yasunaga T (1988) Kinetics of the interaction between DNA and acridine –orange. Bull Chem Soc Jpn 61:643–653

    Article  CAS  Google Scholar 

  38. Darzynkiewicz Z, Kapuscinski J (1990) Acridine orange: a versatile probe of nucleic acids and other cell constituents. Flow cytometry and sorting, 2nd edn. Wiley- Liss, New York, pp 291–314

    Google Scholar 

  39. Okumura H, Akane T, Tsubo Y, Matsumoto S (1997) Comparison of conventional surface cleaning methods for Si molecular beam epitaxy. J Electrochem Soc 144(11):3765–3768

    Article  CAS  Google Scholar 

  40. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Alignment and sensitive detection of dna by a moving interface. Science 265:2096–2098

    Article  CAS  PubMed  Google Scholar 

  41. Bensimon D, Simon AJ, Croquette V, Bensimon A (1995) Stretching DNA with a receding meniscus—experiments and models. Phys Rev Lett 74(23):4754–4757

    Article  CAS  PubMed  Google Scholar 

  42. Michalet X, Ekong R, Fougerousse F, Rousseaux S, Schurra C, Hornigold N, Vanslegtenhorst M, Wolfe J, Povey S, Beckmann JS, Bensimon A (1997) Dynamic molecular combing: stretching the whole human genome for high–resolution studies. Science 277:1518–1523

    Article  CAS  PubMed  Google Scholar 

  43. Liu YY, Wang PY, Dou SX, Wang WC, Xie P, Yin HW, Zhang XD (2004) Ionic effect on combing of single DNA molecules. and observation of their force–induced melting by fluorescence microscopy. J Chem Phys 121(9):4302–4309

    Article  CAS  PubMed  Google Scholar 

  44. Liu YY, Wang PY, Dou SX (2007) Single–molecule studies of DNA by molecular combing. Prog Nat Sci 17(5):493–499.

    Article  CAS  Google Scholar 

  45. Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A (2007) Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 18(8):3059–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim J, Hoon J, Shi WX, Larson RG (2007) Methods of stretching DNA molecules using flow fields. Langmuir 23(2):755–764

    Article  CAS  PubMed  Google Scholar 

  47. Parra I, Windle B (1993) High–resolution visual mapping of stretched DNA by fluorescent hybridization. Nat Genet 5(1):17–21

    Article  CAS  PubMed  Google Scholar 

  48. Schwartz DC, Li XJ, Hernandez LI, Ramnarain SP, Huff EJ, Wang YK (1993) Ordered restriction maps of Saccharomyces–Cerevisiae chromosomes constructed by optical mapping. Science 262:110–114

    Article  CAS  PubMed  Google Scholar 

  49. Wang YK, Huff EJ, Schwartz DC (1995) Optical mapping of site–directed cleavages on single DNA–molecules by the reca –assisted restriction–endonuclease technique. Proc Natl Acad Sci U S A 92(1):165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fransz PF, Alonsoblanco C, Liharska TB, Peeters AJM, Zabel P, Dejong JH (1996) High–resolution physical mapping in arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibers. Plant J 9(3):421–430

    Article  CAS  PubMed  Google Scholar 

  51. Yokota H, Johnson F, Lu HB, Robinson RM, Belu AM, Garrison MD, Ratner BD, Trask BJ, Miller DL (1997) A new method for straightening DNA molecules for optical restriction mapping. Nucleic Acids Res 25(5):1064–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwartz DC, Samad A (1997) Optical mapping approaches to molecular genomics. Curr Opin Biotechnol 8(1):70–74

    Article  CAS  PubMed  Google Scholar 

  53. Kraus J, Weber RG, Cremer M, Seebacher T, Fischer C, Schurra C, Jauch A, Lichter P, Bensimon A, Cremer T (1997) High–resolution comparative hybridization to combed DNA fibers. Hum Genet 99(3):374–380

    Article  CAS  PubMed  Google Scholar 

  54. Herrick J, Bensimon A (1999) Single molecule analysis of DNA replication. Conference: bacterial cell cycle meeting, location: Abondance, France, Date: Mar 10–14. Biochimie 81(8–9):859–871

    Article  CAS  PubMed  Google Scholar 

  55. Gueroui Z, Place C, Freyssingeas E, Berge B (2002) Observation by fluorescence microscopy of transcription on single combed DNA. Proc Natl Acad Sci U S A 99(9):6005–6010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anglana M, Apiou F, Bensimon A, Debatisse M (2003) Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114(3):385–394

    Article  CAS  PubMed  Google Scholar 

  57. Labit H, Goldar A, Guilbaud G, Douarche C, Hyrien O, Marheineke K (2008) A simple and optimized method of producing silanized surfaces for FISH and replication mapping on combed DNA fibers. Biotechniques 45(6):649–653

    Article  CAS  PubMed  Google Scholar 

  58. Czajkowsky DM, Liu J, Hamlin JL, Shao Z (2008) DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome vi. J Mol Biol 375(1):12–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support from the National Science Foundation (NSF-DMR 0606387 and CBET 1033623) is gratefully acknowledged. We express thanks for assistance with the experiments of I. Alsanea, G. Ho and M. Mehta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sokolov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoory, E., Budassi, J., Pfeffer, E. et al. Discrimination of Adsorbed Double-Stranded and Single-Stranded DNA Molecules on Surfaces by Fluorescence Emission Spectroscopy Using Acridine Orange Dye. J Fluoresc 27, 2153–2158 (2017). https://doi.org/10.1007/s10895-017-2154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2154-7

Keywords

Navigation