Skip to main content
Log in

Study on the Interaction of the CpG Alternating DNA with CdTe Quantum Dots

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel sensitive method for detection of DNA methylation was developed with thioglycollic acid (TGA)-capped CdTe quantum dots (QDs) as fluorescence probes. Recognition of methylated DNA sites would be useful strategy due to the important roles of methylation in disease occurrence and developmental processes. DNA methylation occurs most often at cytosine-guanine sites (CpG dinucleotides) of gene promoters. The QDs significantly interacted with hybridized unmethylated and methylated DNA. The interaction of CpG rich methylated and unmethylated DNA hybrid with quantum dots as an optical probe has been investigated by fluorescence spectroscopy and electrophoresis assay. The fluorescence intensity of QDs was highly dependent to unmethylated and methylated DNA. Specific site of CpG islands of Adenomatous polyposis coli (APC), a well-studied tumor suppressor gene, was used as the detection target. Under optimum conditions, upon the addition of unmethylated dsDNA, the fluorescence intensity increased in linear range from 1.0 × 10− 10 to 1.0 × 10− 6M with detection limit of 6.2 × 10− 11 M and on the other hand, the intensity of QDs showed no changes with addition of methylated dsDNA. We also demonstrated that the unmethylated and methylated DNA and QDs complexes showed different mobility in electrophoresis assay. This easy and reliable method could distinguish between methylated and unmethylated DNA sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    Article  CAS  PubMed  Google Scholar 

  2. Duffy MJ, Napieralski R, Martens JWM, Span PN, Spyratos F, Sweep FCGJ, Brunner N, Foekens JA, Schmitt M (2009) Methylated genes as new cancer biomarkers. Eur J Cancer 45:335–346

    Article  CAS  PubMed  Google Scholar 

  3. Mulero-Navarro S, Esteller M (2008) Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol 8:1–11

    Article  Google Scholar 

  4. Zhang J, Xing B, Song J, Zhang F, Nie C, Jiao L, Liu L, Lv F, Wang S (2014) Associated analysis of DNA methylation for cancer detection using CCP-based FRET technique. Anal Chem 86:346–350

    Article  CAS  PubMed  Google Scholar 

  5. Selaru FM, David S, Meltzer SJ, Hamilton JP (2009) Epigenetic events in gastrointestinal cancer. Am J Gastroenterol 104:1910–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  CAS  PubMed  Google Scholar 

  7. Yoshida T, Yamashita S, Takamura-Enya T, Niwa T, Ando T, Enomoto S, Maekita T, Nakazawa K, Tatematsu M, Ichinose M, Ushijima T (2011) Alu and Satalpha hypomethylation in Helicobacter pylori-infected gastric mucosae. Int J Cancer 128:33–39

    Article  CAS  PubMed  Google Scholar 

  8. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  9. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Eng J Med 349:2042–2054

    Article  CAS  Google Scholar 

  10. Tsou JA, Galler JS, Siegmund KD, Laird PW, Turla S, Cozen W, Hagen JA, Koss MN, Laird-Offringa IA (2007) Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma. Mol Cancer 6:70

    Article  PubMed  PubMed Central  Google Scholar 

  11. Worm J, Aggerholm A, Guldberg P (2001) In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin Chem 47:1183–1189

    CAS  PubMed  Google Scholar 

  12. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  13. Muller HM, Fiegl H, Widschwendter A, Widschwendter M (2004) Prognostic DNA methylation marker in serum of cancer patients. Ann N Y Acad Sci 1022:44–49

    Article  CAS  PubMed  Google Scholar 

  14. Yi JM, Guzzetta AA, Bailey VJ, Downing SR, Van Neste L (2013) Novel methylation biomarker panel for the early detection of pancreatic cancer. Clin Cancer Res 19:6544–6555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10:721–733

    Article  CAS  PubMed  Google Scholar 

  16. Sheikhnejad R, Zohri M, Shadmehr MB (2013) Detection of aberrant methylation of 10 genes in genomic DNA of lung tumors. Ann Oncol 24:2705–2706

    Article  CAS  PubMed  Google Scholar 

  17. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M (2006) DNA methylation: bisulphite modification and analysis. Nat Protoc 1:2353–2364

    Article  CAS  PubMed  Google Scholar 

  19. Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Khoobi M, Behzadi H, Hamedani M, Sheikhnejad R (2014) DNA methylation detection by a novel fluorimetric nanobiosensor for early cancer diagnosis. Biosens Bioelectron 60:35–44

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Li, B (2014) Chemiluminescence resonance energy transfer biosensing platform for site-specific determination of DNA methylation and assay of DNA methyltransferase activity using exonuclease III-assisted target recycling amplification. Biosens Bioelectron 54:48–54

  21. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aberg KA, McClay JL, Nerella S, Xie LY, Clark SL, Hudson AD, Bukszar J, Adkins D, Consortium SS, Hultman CM, Sullivan PF, Magnusson PK, van den Oord E (2012) MBD-seq as a cost-effective approach for methylome-wide association studies: demonstration in 1500 case–control samples. J Epigenomics 4:605–621

    Article  CAS  Google Scholar 

  23. Bareyt S, Carell T (2008) Selective detection of 5-methylcytosine sites in DNA. Angew Chem Int Ed Engl 47:181–184

    Article  CAS  PubMed  Google Scholar 

  24. Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252

    Article  CAS  PubMed  Google Scholar 

  25. Smith AM, Nie S (2004) Chemical analysis and cellular imaging with quantum dots. Analyst 129:672–677

    Article  CAS  PubMed  Google Scholar 

  26. Ensafi AA, Kazemifard N, Rezaei B (2015) Label-free and turn-on fluorescent cyanide sensor based on CdTe quantum dots using silver nanoparticles. RSC Adv 5:40088–40093

    Article  CAS  Google Scholar 

  27. Mattoussi H, Palui G, Na HB (2012) Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev 64:138–166

    Article  CAS  PubMed  Google Scholar 

  28. Acharya A (2013) Luminescent magnetic quantum dots for in vitro/in vivo imaging and applications in therapeutics. J Nanosci Nanotechnol 13:3753–3768

    Article  CAS  PubMed  Google Scholar 

  29. Wang YC, Hu R, Lin GM, Roy I, Yong KT (2013) Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl Mater Interfaces 5:2786–2799

    Article  CAS  PubMed  Google Scholar 

  30. Wu HF, Gopal J, Abdelhamid HN, Hasan N (2012) Quantum dot applications endowing novelty to analytical proteomics. Proteomics 12:2949–2961

    Article  CAS  PubMed  Google Scholar 

  31. Stanisavljevic M, Chomoucka J, Dostalova S, Krizkova S, Vaculovicova M, Adam V, Kizek R (2014) Interactions between CdTe quantum dots and DNA revealed by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 35:2587–2592

    Article  CAS  PubMed  Google Scholar 

  32. Sabet FS, Hosseini M, Khabbaz H, Dadmehr M, Ganjali MR (2017) FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem 220:527–532

    Article  CAS  PubMed  Google Scholar 

  33. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  34. Chen H, Lin L, Lin Z, Guo G, Lin JM (2010) Chemiluminescence arising from the decomposition of peroxymonocarbonate and enhanced by CdTe quantum dots. J Phys Chem A 114:10049–10058

    Article  CAS  PubMed  Google Scholar 

  35. Sheng Z, Han H, Liang J (2009) The behaviors of metal ions in the CdTe quantum dots–H2O2 chemiluminescence reaction and its sensing application. Luminescence 24:271–275

    Article  CAS  PubMed  Google Scholar 

  36. Gonzalez-Ruiz V, Olives AI, Martin MA, Ribelles P, Ramos MT, Menendez JC (2011) An overview of analytical techniques employed to evidence drug–DNA interactions applications to the design of genosensors. In: Komorowska MA, lsztynska-Janus S (eds) Biomedical engineering, trends, research and technologies. In Tech, pp 65–90

  37. Prunkl C, Pichlmaier M, Winter R, Kharlanov V, Rettig W, Wagenknecht HA (2010) Optical, redox, and DNA-binding properties of phenanthridinium chromophores: elucidating the role of the phenyl substituent for fluorescence enhancement of ethidium in the presence of DNA. Chem Eur J 16:3392–3402

    Article  CAS  PubMed  Google Scholar 

  38. Derreumaux S, Chaoui M, Tevanian G, Fermandjian S (2001) Impact of CpG methylation on structure, dynamics and solvation of cAMP DNA responsive element. Nucl Acid Res 29:2314–2326

    Article  CAS  Google Scholar 

  39. Wanunu M, Cohen-Karni D, Johnson RR, Fields L, Benner J, Peterman N, Zheng Y, Klein ML, Drndic M (2011) Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J Am Chem Soc 133:486–492

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the research Council of University of Tehran for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Hosseini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Khaki, F., Shokri, E. et al. Study on the Interaction of the CpG Alternating DNA with CdTe Quantum Dots. J Fluoresc 27, 2059–2068 (2017). https://doi.org/10.1007/s10895-017-2145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2145-8

Keywords

Navigation