Skip to main content
Log in

Sensing Tryptophan Microenvironment of Amyloid Protein Utilizing Wavelength-Selective Fluorescence Approach

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Structural transition among various forms of proteins involves subtle interplay between structure and dynamics and is crucial in human diseases. Red edge excitation shift (REES) represents a suitable approach to explore the environmental organization and dynamics surrounding tryptophan residues in proteins. Although REES from tryptophan residues has been reported for native, molten globule and denatured states of proteins, such data on the amyloid form of proteins is lacking. κ-casein is one of the most important constituents of casein micelles in milk and has a tendency to form amyloid fibril. We report here REES of the sole tryptophan residue for native, acid-denatured and urea-denatured forms of κ-casein. More importantly, we show that the amyloid form of κ-casein displays REES of 4 nm. We analyze these results in terms of tryptophan microenvironment in various forms of κ-casein, particularly the amyloid form. We conclude that REES is a sensitive tool to monitor structural plasticity in proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Uversky VN (2009) Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J 28:305–325

    Article  CAS  PubMed  Google Scholar 

  2. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tompa P (2010) Structure and function of intrinsically disordered proteins. CRC Press, Boca Raton

    Google Scholar 

  4. Babu MM, Kriwacki RW, Pappu RV (2012) Versatility from protein disorder. Science 337:1460–1461

    Article  CAS  PubMed  Google Scholar 

  5. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  6. Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354

    Article  CAS  PubMed  Google Scholar 

  7. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  CAS  PubMed  Google Scholar 

  8. Uversky VN (2008) Amyloidogenesis of natively unfolded proteins. Curr Alzheimer Res 5:260–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Turoverov KK, Kuznetsova IM, Uversky VN (2010) The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Prog Biophys Mol Biol 102:73–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leonil J, Henry G, Jouanneau D, Delage M-M, Forge V, Putaux J-L (2008) Kinetics of fibril formation of bovine κ-casein indicate a conformational rearrangement as a critical step in the process. J Mol Biol 381:1267–1280

    Article  CAS  PubMed  Google Scholar 

  11. Thorn DC, Meehan S, Sunde M, Rekas A, Gras SL, MacPhee CE, Dobson CM, Wilson MR, Carver JA (2005) Amyloid fibril formation by bovine milk κ-casein and its inhibition by the molecular chaperones αs- and β-casein. Biochemistry 44:17027–17036

    Article  CAS  PubMed  Google Scholar 

  12. Farrell HM Jr, Cooke PH, Wickhan ED, Piotrowski EG, Hoagland PD (2003) Environmental influences on bovine κ-casein: reduction and conversion to fibrillar (amyloid) structures. J Protein Chem 22:259–273

    Article  CAS  PubMed  Google Scholar 

  13. Jain N, Bhasne K, Hemaswasthi M, Mukhopadhyay S (2013) Structural and dynamical insights into the membrane-bound α-synuclein. PLoS One 8:e83752

    Article  PubMed  PubMed Central  Google Scholar 

  14. Colombo MF, Rau DC, Parsegian VA (1992) Protein solvation in allosteric regulation: a water effect on hemoglobin. Science 256:655–659

    Article  CAS  PubMed  Google Scholar 

  15. Xu F, Cross TA (1999) Water: foldase activity in catalyzing polypeptide conformational rearrangements. Proc Natl Acad Sci U S A 96:9057–9061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fenimore PW, Frauenfelder H, McMohan BH, Parak FG (2002) Slaving: solvent fluctuations dominate protein dynamics and function. Proc Natl Acad Sci U S A 99:16047–16051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mattos C (2002) Protein-water interactions in a dynamic world. Trends Biochem Sci 27:203–208

    Article  CAS  PubMed  Google Scholar 

  18. Timasheff SN (2002) Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41:13473–13482

    Article  CAS  PubMed  Google Scholar 

  19. Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866

    Article  CAS  PubMed  Google Scholar 

  20. Hilser VJ (2011) Structural biology: finding the wet spots. Nature 469:166–167

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacharyya K, Bagchi B (2000) Slow dynamics of constrained water in complex geometries. J Phys Chem A 104:10603–10613

    Article  CAS  Google Scholar 

  22. Jha A, Ishii K, Udgaonkar JB, Tahara T, Krishnamoorthy G (2011) Exploration of the correlation between solvation dynamics and internal dynamics of a protein. Biochemistry 50:397–408

    Article  CAS  PubMed  Google Scholar 

  23. Chattopadhyay A, Haldar S (2014) Dynamic insight into protein structure utilizing red edge excitation shift. Acc Chem Res 47:12–19

    Article  CAS  PubMed  Google Scholar 

  24. Holt C (1992) Structure and stability of bovine casein micelles. Adv Protein Chem 43:63–151

    Article  CAS  PubMed  Google Scholar 

  25. Shekar PC, Goel S, Rani SDS, Sarathi DP, Alex JL, Singh S, Kumar S (2006) κ-casein-deficient mice fail to lactate. Proc Natl Acad Sci U S A 103:8000–8005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farrell HM Jr, Malin EL, Brown EM, Qi PX (2006) Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr Opin Colloid Interface Sci 11:135–147

    Article  CAS  Google Scholar 

  27. Mukherjee S, Chattopadhyay A (1995) Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems. J Fluoresc 5:237–246

    Article  CAS  PubMed  Google Scholar 

  28. Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17:19–42

    Article  CAS  PubMed  Google Scholar 

  29. Demchenko AP (2008) Site-selective red-edge effects. Methods Enzymol 450:59–78

    Article  CAS  PubMed  Google Scholar 

  30. Raghuraman H, Kelkar DA, Chattopadhyay A (2005) Novel insights into protein structure and dynamics utilizing the red edge excitation shift approach. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence 2005. Springer, New York, pp 199–222

    Chapter  Google Scholar 

  31. Haldar S, Chaudhuri A, Chattopadhyay A (2011) Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift. J Phys Chem B 115:5693–5706

    Article  CAS  PubMed  Google Scholar 

  32. Jain N, Bhattacharya M, Mukhopadhyay S (2011) Chain collapse of an amyloidogenic intrinsically disordered protein. Biophys J 101:1720–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kelkar DA, Chaudhuri A, Haldar S, Chattopadhyay A (2010) Exploring tryptophan dynamics in acid-induced molten globule state of bovine α-lactalbumin: a wavelength-selective fluorescence approach. Eur Biophys J 39:1453–1463

    Article  CAS  PubMed  Google Scholar 

  34. Chaudhuri A, Haldar S, Chattopadhyay A (2010) Organization and dynamics of tryptophans in the molten globule state of bovine α-lactalbumin utilizing wavelength-selective fluorescence approach: comparisons with native and denatured states. Biochem Biophys Res Commun 394:1082–1086

    Article  CAS  PubMed  Google Scholar 

  35. Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34:151–160

    Article  CAS  PubMed  Google Scholar 

  36. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T. Anal Biochem 177:244–249

    Article  CAS  PubMed  Google Scholar 

  37. Chattopadhyay A, Rawat SS, Kelkar DA, Ray S, Chakrabarti A (2003) Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach. Protein Sci 12:2389–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Council of Scientific and Industrial Research, Govt. of India. A.C. gratefully acknowledges support from J.C. Bose Fellowship (Department of Science and Technology, Govt. of India). H.C. thanks the Council of Scientific and Industrial Research for the award of a Senior Research Associateship and the University Grants Commission for UGC-Assistant Professor position and UGC-Start-Up Grant (F.4-5(138-FRP)/2014(BSR)). A.C. is an Adjunct Professor of Tata Institute of Fundamental Research (Mumbai), RMIT University (Melbourne, Australia), Indian Institute of Technology (Kanpur), and Indian Institute of Science Education and Research (Mohali). We thank A. Harikrishna for help with transmission electron microscopy, G. Aditya Kumar for help in making figures, and members of the Chattopadhyay laboratory for their comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, H., Chattopadhyay, A. Sensing Tryptophan Microenvironment of Amyloid Protein Utilizing Wavelength-Selective Fluorescence Approach. J Fluoresc 27, 1995–2000 (2017). https://doi.org/10.1007/s10895-017-2138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2138-7

Keywords

Navigation