Skip to main content
Log in

Preparation of K+-Doped Core-Shell NaYF4:Yb, Er Upconversion Nanoparticles and its Application for Fluorescence Immunochromatographic Assay of Human Procalcitonin

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present study, we reported a convenient route to prepare well dispersed and functionalized K+-doped core-shell upconversion nanoparticles (UCP) by layer-by-layer (LbL) assembly of polyelectrolytes. UCP was firstly transferred to aqueous phase using cationic surfactant cetyl trimethyl ammonium bromide (CTAB) via hydrophobic interaction without removing the existing oleic acid (OA). Then the positively charged hydrophilic UCP@CTAB was further alternately deposited with negatively charged [poly (sodium 4-styrenesulfonate)] (PSS), positively charged [poly (allylamine hydrochloride)] (PAH) and negatively charged [poly (acrylic acid)] (PAA). The final carboxyl functionalized UCP@CTAB@PSS@PAH@PAA was then conjugated with monoclonal antibody1 (AB1) of procalcitonin (PCT), resulting in successful detection of PCT antigens based on the immunochromatographic assay (ICA). Linear response was achieved from 0 to 10 ng/mL, and the lowest limit of detection (LLD) was 0.18 ng/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Phatlhane DV, Ipp H, Erasmus RT, Zemlin AE (2016) Evaluating the use of procalcitonin in an asymptomatic, HIV-infected antiretroviral therapy-naive, South African cohort. Clinical chemistry and laboratory medicine 54(3):501–508. doi:10.1515/cclm-2015-0549

    Article  CAS  PubMed  Google Scholar 

  2. Meisner M (2014) Update on procalcitonin measurements. Annals of laboratory. Medicine 34(4):263–273. doi:10.3343/alm.2014.34.4.263

    CAS  Google Scholar 

  3. Tian Y, Lv J, Wang J, Qin Y, Liu J, Zhao W (2014) A light initiated chemiluminescent immunoassay for procalcitonin. Acta biochimica et biophysica Sinica 46(9):817–819. doi:10.1093/abbs/gmu061

    Article  PubMed  Google Scholar 

  4. Yang M, Gao H, Chen J, Xu X, Tang L, Yang Y, Liang W, Yu L, Sheng J, Li L (2016) Bacterial coinfection is associated with severity of avian influenza A (H7N9), and procalcitonin is a useful marker for early diagnosis. Diagnostic microbiology and infectious disease 84(2):165–169. doi:10.1016/j.diagmicrobio.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  5. Kim K-E, Han J-Y (2010) Evaluation of the clinical performance of an automated procalcitonin assay for the quantitative detection of bloodstream infection. Korean journal of laboratory. Medicine 30(2):153–159. doi:10.3343/kjlm.2010.30.2.153

    CAS  Google Scholar 

  6. Liao T, Yuan F, Yu H, Li Z (2016) An ultrasensitive ELISA method for the detection of procalcitonin based on magnetic beads and enzyme-antibody labeled gold nanoparticles. Anal Methods 8(7):1577–1585. doi:10.1039/c5ay03298a

    Article  CAS  Google Scholar 

  7. Yang Z-H, Zhuo Y, Yuan R, Chai Y-Q (2016) Electrochemical activity and electrocatalytic property of cobalt phthalocyanine nanoparticles-based immunosensor for sensitive detection of procalcitonin. Sensors Actuators B Chem 227:212–219. doi:10.1016/j.snb.2015.08.109

    Article  CAS  Google Scholar 

  8. Hubl W, Krassler J, Zingler C, Pertschy A, Hentschel J, Gerhards-Reich C, Mack M, Demant T (2003) Evaluation of a fully automated procalcitonin chemiluminescence immunoassay. Clinical laboratory 49(7–8):319–327

    CAS  PubMed  Google Scholar 

  9. Morgenthaler NG, Struck J, Fischer-Schulz C, Seidel-Mueller E, Beier W, Bergmann A (2002) Detection of procalcitonin (PCT) in healthy controls and patients with local infection by a sensitive ILMA. Clinical laboratory 48(5–6):263–270

    CAS  PubMed  Google Scholar 

  10. Corstjens PL, van Lieshout L, Zuiderwijk M, Kornelis D, Tanke HJ, Deelder AM, van Dam GJ (2008) Up-converting phosphor technology-based lateral flow assay for detection of Schistosoma circulating anodic antigen in serum. Journal of clinical microbiology 46(1):171–176. doi:10.1128/JCM.00877–07

    Article  CAS  PubMed  Google Scholar 

  11. Hu G, Sheng W, Zhang Y, Wu X, Wang S (2015) A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels. Analytical and bioanalytical chemistry 407(28):8487–8496. doi:10.1007/s00216–015–8996-4

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Wang F, Xu J, Wang Y, Liu Y, Chen X, Chen H, Liu X (2010) Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning. Comptes Rendus Chimie 13(6–7):731–736. doi:10.1016/j.crci.2010.03.021

    Article  CAS  Google Scholar 

  13. Tian G, Duan L, Zhang X, Yin W, Yan L, Zhou L, Liu X, Zheng X, Li J, Gu Z, Zhao Y (2014) One-pot template-free synthesis of NaYF4 upconversion hollow nanospheres for bioimaging and drug delivery. Chemistry, an Asian journal 9(6):1655–1662. doi:10.1002/asia.201301695

    Article  CAS  PubMed  Google Scholar 

  14. Xing G, Liao Y, Wu X, Chakrabortty S, Liu X, Yeow EKL, Chan Y, Sum TC (2012) Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS Nanorod Heterostructures. Acs. Nano 6(12):10835–10844. doi:10.1021/nn304200a

    CAS  Google Scholar 

  15. Alford R, Simpson HM, Duberman J, Hill GC, Ogawa M, Regino C, Kobayashi H, Choyke PL (2009) Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging 8(6):341–354. doi:10.2310/7290.2009.00031

    CAS  PubMed  Google Scholar 

  16. Heer S, Kompe K, Gudel HU, Haase M (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Advanced materials 16 (23–24):2102 − +. doi:10.1002/adma.200400772

  17. Wang P, Wang R, Zhang W, Su X, Luo H (2016) Novel fabrication of immunochromatographic assay based on up conversion phosphors for sensitive detection of clenbuterol. Biosens Bioelectron 77:866–870. doi:10.1016/j.bios.2015.10.053

    Article  CAS  PubMed  Google Scholar 

  18. Hua F, Zhang P, Zhang F, Zhao Y, Li C, Sun C, Wang X, Yang R, Wang C, Yu A, Zhou L (2015) Development and evaluation of an up-converting phosphor technology-based lateral flow assay for rapid detection of Francisella tularensis. Scientific reports 5:171–178. doi:10.1038/srep17178

    Article  Google Scholar 

  19. Zhao Y, Wang HR, Zhang PP, Sun CY, Wang XC, Wang XR, Yang RF, Wang CB, Zhou L (2016) Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Scientific reports 6:213–242. doi:10.1038/srep21342

    Google Scholar 

  20. Liu C, Wang Z, Wang X, Li Z (2011) Surface modification of hydrophobic NaYF4:Yb,Er upconversion nanophosphors and their applications for immunoassay. Science China. Chemistry 54(8):1292–1297. doi:10.1007/s11426-011-4319-6

    CAS  Google Scholar 

  21. Zhang X, Yang P, Dai Y, Ma P, Li X, Cheng Z, Hou Z, Kang X, Li C, Lin J (2013) Multifunctional Up-Converting Nanocomposites with Smart Polymer Brushes Gated Mesopores for Cell Imaging and Thermo/pH Dual-Responsive Drug Controlled Release. Advanced Functional Materials 23(33):4067–4078. doi:10.1002/adfm.201300136

    Article  CAS  Google Scholar 

  22. Wu Q, Liu C, Fan L, Shi J, Liu Z, Li R, Sun L (2012) Heparinized magnetic mesoporous silica nanoparticles as multifunctional growth factor delivery carriers. Nanotechnology 23(48):48–57. doi:10.1088/0957-4484/23/48/485703

    Google Scholar 

  23. <Versatile Synthesis Strategy for Carboxylic.pdf > .

  24. Bao Y, Luu QAN, Lin CK, Schloss JM, May PS, Jiang CY (2010) Layer-by-layer assembly of freestanding thin films with homogeneously distributed upconversion nanocrystals. J Mater Chem 20(38):8356–8361. doi:10.1039/c0jm01602k

    Article  CAS  Google Scholar 

  25. Zhao Y, Zhou C, Wu R, Li L, Shen H, Li LS (2015) Preparation of multi-shell structured fluorescent composite nanoparticles for ultrasensitive human procalcitonin detection. RSC Adv 5(8):5988–5995. doi:10.1039/c4ra13362e

    Article  CAS  Google Scholar 

  26. Liang Z, Cui Y, Zhao S, Tian L, Zhang J, Xu Z (2014) The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4:Yb3+, Er3+ nanoparticles by codoping with K+ ions. J Alloys Compd 610:432–437. doi:10.1016/j.jallcom.2014.04.183

    Article  CAS  Google Scholar 

  27. Kale V, Soukka T, Hölsä J, Lastusaari M (2013) Enhancement of blue upconversion luminescence in hexagonal NaYF4:Yb,Tm by using K and Sc ions. J Nanopart Res 15(8):1–12. doi:10.1007/s11051-013-1850-8

    Article  Google Scholar 

  28. Yi G-S, Chow G-M (2007) Water-soluble NaYF4: Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19(3):341–343. doi:10.1021/cm062447y

    Article  CAS  Google Scholar 

  29. Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem 44(37):6054–6057. doi:10.1002/anie.200501907

    Article  CAS  Google Scholar 

  30. Liang S, Zhang X, Wu Z, Liu Y, Zhang H, Sun H, Sun H, Yang B (2012) Decoration of up-converting NaYF4:Yb,Er(Tm) nanoparticles with surfactant bilayer. A versatile strategy to perform oil-to-water phase transfer and subsequently surface silication. Crystengcomm 14(10):3484–3489. doi:10.1039/c2ce06578a

    Article  CAS  Google Scholar 

  31. Liu Q, Feng W, Yang T, Yi T, Li F (2013) Upconversion luminescence imaging of cells and small animals. Nat Protoc 8(10):2033–2044. doi:10.1038/nprot.2013.114

    Article  CAS  PubMed  Google Scholar 

  32. Niedbala RS, Feindt H, Kardos K, Vail T, Burton J, Bielska B, Li S, Milunic D, Bourdelle P, Vallejo R (2001) Detection of analytes by immunoassay using up-converting phosphor technology. Analytical biochemistry 293(1):22–30. doi:10.1006/abio.2001.5105

    Article  CAS  PubMed  Google Scholar 

  33. Zijlmans H, Bonnet J, Burton J, Kardos K, Vail T, Niedbala RS, Tanke HJ (1999) Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology. Analytical biochemistry 267(1):30–36. doi:10.1006/abio.1998.2965

    Article  CAS  PubMed  Google Scholar 

  34. Dou Q, Idris NM, Zhang Y (2013) Sandwich-structured upconversion nanoparticles with tunable color for multiplexed cell labeling. Biomaterials 34(6):1722–1731. doi:10.1016/j.biomaterials.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  35. Tian Q, Sun K, Tao K (2013) β-NaYF4:Yb, Er at β-NaYF4 core/shell nanocrystals with significantly enhanced upconversion fluorescence by a successive two-step hot-injection approach. Micro & Nano Letters 8(10):731–734. doi:10.1049/mnl.2013.0398

    Article  CAS  Google Scholar 

  36. Pichaandi J, Das GK, Johnson NJJ, Regier T, van Veggel FCJM (2014) Probing the structure of NaYF4Nanocrystals using synchrotron-based energy-dependent X-ray photoelectron spectroscopy. J Phys Chem C 118(37):21639–21646. doi:10.1021/jp505646j

    Article  CAS  Google Scholar 

  37. Chen H, Lang Y, Zhao D, He C, Qin W (2015) Enhanced high-order upconversion luminescence of hexagonal phase NaYF4:Yb3+,Tm3+ crystals coated with homogeneous shell. J Fluor Chem 174:70–74. doi:10.1016/j.jfluchem.2015.02.019

    Article  CAS  Google Scholar 

  38. Li X, Shen D, Yang J, Yao C, Che R, Zhang F, Zhao D (2013) Successive layer-by-layer strategy for multi-Shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties. Chem Mater 25(1):106–112. doi:10.1021/cm3033498

    Article  CAS  Google Scholar 

  39. Meesaragandla B, Adusumalli VN, Mahalingam V (2015) Methyl oleate-capped upconverting nanocrystals: a simple and general ligand exchange strategy to render nanocrystals dispersible in aqueous and organic medium. Langmuir 31(19):5521–5528. doi:10.1021/acs.langmuir.5b01070

    Article  CAS  PubMed  Google Scholar 

  40. Yu H, Xu L, Qi X-P (2014) Quantum dots labeled lateral flow strip for determination of procalcitonin in blood. Chin J Anal Chem 42(11):1592–1597

    CAS  Google Scholar 

  41. Shu L-H, J-J X, Wang S, Zhong H-Q, Dong X-Y, Jiang K, Zhang H-Y, Xiong Q, Wang C, Sun T, Sun C, Lu Q (2015) Distribution of pathogenic microorganisms and its relationship with clinical features in children with community-acquired pneumonia. Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics 17(10):1056–1061

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was founded by the National Natural Science Foundation of China (No.21176124). We thank to Nanjing Norman Biological Technology Co. Ltd. for providing the PCT antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwang Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Lei, L., Feng, H. et al. Preparation of K+-Doped Core-Shell NaYF4:Yb, Er Upconversion Nanoparticles and its Application for Fluorescence Immunochromatographic Assay of Human Procalcitonin. J Fluoresc 26, 2237–2246 (2016). https://doi.org/10.1007/s10895-016-1919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1919-8

Keywords

Navigation