Skip to main content
Log in

Lanthanide-containing persistent luminescence materials with superbright red afterglow and excellent solution processability

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lanthanide-containing persistent luminescence materials are promising candidates for a wide range of applications by virtue of splendid superiorities in afterglow performance. However, it is a crucial challenge to achieve high-quality afterglow materials at the attractive nanoscale, with uniform size, controllable morphology, and satisfying brightness. Herein, a bottom-up approach was developed to construct the high-quality afterglow nanoparticles, incorporating luminescent lanthanide complex and organic molecular ingredients under mild conditions. These nanoparticles exhibited intrinsic lanthanide luminescence with superbright red afterglow (>10 cd m−2) in a homogeneous solution. The afterglow solution with excellent processability can serve as ideal building blocks for the on-demand fabrication of functional nanomaterials. Water-dispersible afterglow nanoparticles with state-of-the-art high brightness were uniformly constructed to perform whole-blood lateral flow assay of procalcitonin with a naked-eye detection limit of 0.5 ng mL−1, promoting the point-of-care testing development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y, Gecevicius M, Qiu J. Chem Soc Rev, 2016, 45: 2090–2136

    Article  CAS  PubMed  Google Scholar 

  2. Xu S, Chen R, Zheng C, Huang W. Adv Mater, 2016, 28: 9920–9940

    Article  CAS  PubMed  Google Scholar 

  3. Xu J, Tanabe S. J Lumin, 2019, 205: 581–620

    Article  CAS  Google Scholar 

  4. Zhao W, He Z, Tang BZ. Nat Rev Mater, 2020, 5: 869–885

    Article  CAS  Google Scholar 

  5. Zhao X, Chen LJ, Zhao KC, Liu YS, Liu J, Yan XP. TrAC Trends Anal Chem, 2019, 118: 65–72

    Article  CAS  Google Scholar 

  6. van den Eeckhout K, Smet PF, Poelman D. Materials, 2010, 3: 2536–2566

    Article  CAS  PubMed Central  Google Scholar 

  7. Kabe R, Adachi C. Nature, 2017, 550: 384–387

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Ma Q, Liu H, Wang Y, Shen H, Hu X, Ma C, Yuan Q, Tan W. Anal Chem, 2017, 89: 12764–12770

    Article  CAS  PubMed  Google Scholar 

  9. Wu BY, Wang HF, Chen JT, Yan XP. J Am Chem Soc, 2011, 133: 686–688

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Zhang Y, Wu X, Huang L, Li D, Fan W, Han G. J Am Chem Soc, 2015, 137: 5304–5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat Mater, 2015, 14: 685–690

    Article  CAS  PubMed  Google Scholar 

  12. Yang Z, Mao Z, Zhang X, Ou D, Mu Y, Zhang Y, Zhao C, Liu S, Chi Z, Xu J, Wu YC, Lu PY, Lien A, Bryce MR. Angew Chem Int Ed, 2016, 55: 2181–2185

    Article  CAS  Google Scholar 

  13. Yang J, Zhen X, Wang B, Gao X, Ren Z, Wang J, Xie Y, Li J, Peng Q, Pu K, Li Z. Nat Commun, 2018, 9: 840

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang Z, Zhu CY, Yin SY, Wei ZW, Zhang JH, Fan YN, Jiang JJ, Pan M, Su CY. Angew Chem Int Ed, 2019, 58: 3481–3485

    Article  Google Scholar 

  15. Ni X, Zhang X, Duan X, Zheng HL, Xue XS, Ding D. Nano Lett, 2019, 19: 318–330

    Article  CAS  PubMed  Google Scholar 

  16. Li D, Lu F, Wang J, Hu W, Cao XM, Ma X, Tian H. J Am Chem Soc, 2018, 140: 1916–1923

    Article  CAS  PubMed  Google Scholar 

  17. Miao Q, Xie C, Zhen X, Lyu Y, Duan H, Liu X, Jokerst JV, Pu K. Nat Biotechnol, 2017, 35: 1102–1110

    Article  CAS  PubMed  Google Scholar 

  18. Lyu Y, Cui D, Huang J, Fan W, Miao Y, Pu K. Angew Chem Int Ed, 2019, 58: 4983–4987

    Article  CAS  Google Scholar 

  19. Cheng P, Pu K. Nat Rev Mater, 2021, doi: https://doi.org/10.1038/s41578-021-00328-6

  20. He S, Xie C, Jiang Y, Pu K. Adv Mater, 2019, 31: 1902672

    Article  Google Scholar 

  21. Xie C, Zhen X, Miao Q, Lyu Y, Pu K. Adv Mater, 2018, 30: 1801331

    Article  Google Scholar 

  22. Zhen X, Xie C, Pu K. Angew Chem Int Ed, 2018, 57: 3938–3942

    Article  CAS  Google Scholar 

  23. Aitasalo T, Dereń P, Hölsä J, Jungner H, Krupa JC, Lastusaari M, Legendziewicz J, Niittykoski J, Stręk W. J Solid State Chem, 2003, 171: 114–122

    Article  CAS  Google Scholar 

  24. Pan Z, Lu YY, Liu F. Nat Mater, 2012, 11: 58–63

    Article  CAS  Google Scholar 

  25. Maldiney T, Bessière A, Seguin J, Teston E, Sharma SK, Viana B, Bos AJJ, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C. Nat Mater, 2014, 13: 418–426

    Article  CAS  PubMed  Google Scholar 

  26. Li Z, Yu N, Zhou J, Li Y, Zhang Y, Huang L, Huang K, Zhao Y, Kelmar S, Yang J, Han G. Adv Mater, 2020, 32: 2003881

    Article  CAS  Google Scholar 

  27. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y. J Electrochem Soc, 1996, 143: 2670–2673

    Article  CAS  Google Scholar 

  28. Yu N, Li Y, Li Z, Han G. Sci China Chem, 2018, 61: 757–758

    Article  CAS  Google Scholar 

  29. Zhuang Y, Katayama Y, Ueda J, Tanabe S. Optical Mater, 2014, 36: 1907–1912

    Article  CAS  Google Scholar 

  30. Molinero-Fernández Á, Moreno-Guzmán M, Arruza L, López MÁ, Escarpa A. ACS Sens, 2020, 5: 1336–1344

    Article  PubMed  Google Scholar 

  31. Su X, Wen Y, Yuan W, Xu M, Liu Q, Huang C, Li F. Chem Commun, 2020, 56: 10694–10697

    Article  CAS  Google Scholar 

  32. Wei H, Zhao Z, Wei C, Yu G, Liu Z, Zhang B, Bian J, Bian Z, Huang C. Adv Funct Mater, 2016, 26: 2085–2096

    Article  CAS  Google Scholar 

  33. Landfester K. Angew Chem Int Ed, 2009, 48: 4488–4507

    Article  CAS  Google Scholar 

  34. Paterson AS, Raja B, Garvey G, Kolhatkar A, Hagström AEV, Kourentzi K, Lee TR, Willson RC. Anal Chem, 2014, 86: 9481–9488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen C, Chi Z, Chong KC, Batsanov AS, Yang Z, Mao Z, Yang Z, Liu B. Nat Mater, 2021, 20: 175–180

    Article  PubMed  Google Scholar 

  36. Jin J, Jiang H, Yang Q, Tang L, Tao Y, Li Y, Chen R, Zheng C, Fan Q, Zhang KY, Zhao Q, Huang W. Nat Commun, 2020, 11: 842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gu L, Shi H, Bian L, Gu M, Ling K, Wang X, Ma H, Cai S, Ning W, Fu L, Wang H, Wang S, Gao Y, Yao W, Huo F, Tao Y, An Z, Liu X, Huang W. Nat Photonics, 2019, 13: 406–411

    Article  CAS  Google Scholar 

  38. Yang X, Yan D. Chem Sci, 2016, 7: 4519–4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen H, Yao X, Ma X, Tian H. Adv Opt Mater, 2016, 4: 1397–1401

    Article  CAS  Google Scholar 

  40. Feng HT, Zeng J, Yin PA, Wang XD, Peng Q, Zhao Z, Lam JWY, Tang BZ. Nat Commun, 2020, 11: 2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hirata S, Totani K, Zhang J, Yamashita T, Kaji H, Marder SR, Watanabe T, Adachi C. Adv Funct Mater, 2013, 23: 3386–3397

    Article  CAS  Google Scholar 

  42. Li Q, Zhou M, Yang M, Yang Q, Zhang Z, Shi J. Nat Commun, 2018, 9: 734

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ma X, Xu C, Wang J, Tian H. Angew Chem Int Ed, 2018, 57: 10854–10858

    Article  CAS  Google Scholar 

  44. Wang P, Zheng D, Liu S, Luo M, Li J, Shen S, Li S, Zhu L, Chen Z. Curr Alzheimer Resbon, 2021, 171: 946–952

    CAS  Google Scholar 

  45. Su Y, Zhang Y, Wang Z, Gao W, Jia P, Zhang D, Yang C, Li Y, Zhao Y. Angew Chem Int Ed, 2020, 59: 9967–9971

    Article  CAS  Google Scholar 

  46. Li F, Xu M. Long-afterglow luminescent material. PCT Patent. WO2020199191, 2019-04-04

  47. Zhou J, Liu Q, Feng W, Sun Y, Li F. Chem Rev, 2015, 115: 395–465

    Article  CAS  PubMed  Google Scholar 

  48. Chen FF, Chen ZQ, Bian ZQ, Huang CH. Coord Chem Rev, 2010, 254: 991–1010

    Article  CAS  Google Scholar 

  49. Resch-Genger U, DeRose PC. Pure Appl Chem, 2012, 84: 1815–1835

    Article  CAS  Google Scholar 

  50. Dhara A, Sadhukhan T, Sheetz EG, Olsson AH, Raghavachari K, Flood AH. J Am Chem Soc, 2020, 142: 12167–12180

    Article  CAS  PubMed  Google Scholar 

  51. Braslavsky SE. Pure Appl Chem, 2007, 79: 293–465

    Article  CAS  Google Scholar 

  52. Jiang Y, Huang J, Zhen X, Zeng Z, Li J, Xie C, Miao Q, Chen J, Chen P, Pu K. Nat Commun, 2019, 10: 2064

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu Y, Xu J, Poh ET, Liang L, Liu H, Yang JKW, Qiu CW, Vallée RAL, Liu X. Nat Nanotechnol, 2019, 14: 1110–1115

    Article  CAS  PubMed  Google Scholar 

  54. Bian L, Ma H, Ye W, Lv A, Wang H, Jia W, Gu L, Shi H, An Z, Huang W. Sci China Chem, 2020, 63: 1443–1448

    Article  CAS  Google Scholar 

  55. Wang J, Ma Q, Zheng W, Liu H, Yin C, Wang F, Chen X, Yuan Q, Tan W. ACS Nano, 2017, 11: 8185–8191

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0205100) and the National Natural Science Foundation of China (21937003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyou Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting information

11426_2021_1099_MOESM1_ESM.pdf

Lanthanide-containing persistent luminescence materials with superbright red afterglow and excellent solution processability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Liu, J., Su, X. et al. Lanthanide-containing persistent luminescence materials with superbright red afterglow and excellent solution processability. Sci. China Chem. 64, 2125–2133 (2021). https://doi.org/10.1007/s11426-021-1099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1099-x

Keywords

Navigation