Skip to main content
Log in

Green Synthesis, Optical, Structural, Photocatalytic, Fluorescence Quenching and Degradation Studies of ZnS Nanoparticles

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The study describes a simple hydrothermal method for the synthesis of zinc sulfide nanoparticles (ZnS NPs) using bovine serum albumin (BSA). The synthesized NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), fluorescence, UV-visible diffuse reflectance spectra (DRS) and zeta potential techniques. The morphologies and sizes were characterized by SEM and TEM. The size of ZnS NPs was observed with an effective diameter size of 20 nm. The photocatalytic activity of ZnS NPs was evaluated by the degradation of rhodamine B (RB) dye under sunlight irradiation. The degradation reaction follows the pseudo-first order kinetics. In addition, the fluorescence quenching and binding of ZnS NPs with crystal violet (CV) molecules have been studied. The binding constant (Ka) between ZnS NPs and CV is calculated using modified Stern–Volmer equation. The photocatalytic degradation and kinetics of CV dye by ZnS NPs in the presence of UV light has been investigated using spectrofluorometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goharshadi EK, Mehrkhah R, Nancarrow P (2013) Synthesis, characterization and measurement of structural, optical and photoluminescent properties of zinc sulfide quantum dot. Mater Sci Semicond Process 16:356–362. doi:10.1016/j.mssp.2012.09.012

    Article  CAS  Google Scholar 

  2. Bredol M, Merikhi J (1998) ZnS precipitation: morphology control. J Mater Sci 33:471–476. doi:10.1023/A:1004396519134

    Article  CAS  Google Scholar 

  3. Calandra P, Goffredi M, Liveri VT (1999) Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids Surf A Physicochem Eng Asp 160:9–13. doi:10.1016/S0927-7757(99)00256-3

    Article  CAS  Google Scholar 

  4. Prevenslik TV (2000) Acoustoluminescence and sonoluminescence. J Lumin 87–89:1210–1212. doi:10.1016/S0022-2313(99)00513-X

    Article  Google Scholar 

  5. Yamamoto T, Kishimoto S, Iida S (2001) Control of valence states for ZnS by triple-codoping method. Physica B 308–310:916–919. doi:10.1016/S0921-4526(01)00842-0

    Article  Google Scholar 

  6. Wada Y, Kitamura T, Yanagida S, Yin H (1998) Photoreductive dechlorination of chlorinated benzene derivatives catalyzed by ZnS nanocrystallites. Chem Commun 24:2683–2690

    Article  Google Scholar 

  7. Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S (1998) Surface characteristics of ZnS nanocrystallites relating to their Photocatalysis for CO2 reduction. Langmuir 14:5154–5159. doi:10.1021/la9801561

    Article  CAS  Google Scholar 

  8. Chen D, Shen G, Tang K, Lei S, Zheng H, Qian Y (2004) Microwave-assisted polyol synthesis of nanoscale SnSx (x = 1, 2) flakes. J Cryst Growth 260:469–474. doi:10.1016/j.jcrysgro.2003.09.009

    Article  CAS  Google Scholar 

  9. Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, Bai CL (2005) Mass production and high photocatalytic activity of ZnS Nanoporous nanoparticles. Angew Chem 117:1295–1299. doi:10.1002/ange.200462057

    Article  Google Scholar 

  10. Zhang H, Zhang SY, Pan S, Li GP, Hou J (2004) A simple solution route to ZnS nanotubes and hollow nanospheres and their optical properties. Nanotechnology 15:945–948. doi:10.1088/0957-4484/15/8/012

    Article  CAS  Google Scholar 

  11. Kar S, Biswas S, Chaudhuri S (2005) Catalytic growth and photoluminescence properties of ZnS nanowires. Nanotechnology 16:737–740. doi:10.1088/0957-4484/16/6/018

    Article  CAS  Google Scholar 

  12. Zhao QT, Hou LS, Huang RA (2003) Synthesis of ZnSnanorods by a surfactant-assisted soft chemistry method. Inorg Chem Commun 6:971–973. doi:10.1016/S1387-7003(03)00146-1

    Article  CAS  Google Scholar 

  13. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949. doi:10.1126/science.1058120

    Article  CAS  PubMed  Google Scholar 

  14. Yu SH, Yoshimura M (2002) Shape and phase control of ZnSNanocrystals: template fabrication of Wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS.(NH2CH2CH2NH2)0.5. Adv Mater 14:296–300. doi:10.1002/1521-4095(20020219)14:4<296::AID-ADMA296>3.0.CO;2-6

    Article  CAS  Google Scholar 

  15. Hu JQ, Bando Y, Zhan JH, Li YB, Sekiguchi T (2003) Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets. Appl Phys Lett 83:4414–4416. doi:10.1063/1.1629788

    Article  CAS  Google Scholar 

  16. Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56:175–287. doi:10.1016/j.pmatsci.2010.10.001

    Article  CAS  Google Scholar 

  17. El Hassan A, Desseaux V, Tazi S, Puigserver A (2008) Effects of temperature and pH on the kinetics of caramelisation, protein cross-linking and Maillard reactions in aqueous model systems. Food Chem 107:1244–1252. doi:10.1016/j.foodchem.2007.09.062

    Article  Google Scholar 

  18. Nik R, Azizan A, Lockman Z (2012) Synthesis of nickel nanoparticles via nonaqueouspolyol method: effect of reaction time. Sains Malays 41:1037–1042

    Google Scholar 

  19. Xiang QJ, Yu JG, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796. doi:10.1039/c1cs15172j

    Article  CAS  PubMed  Google Scholar 

  20. Tu WG, Zhou Y, Zou ZG (2013) Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv Funct Mater 23:4996–5008. doi:10.1002/adfm.201203547

    Article  CAS  Google Scholar 

  21. Zhang QF, Uchaker E, Candelaria SL, Cao GZ (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171. doi:10.1039/c3cs00009e

    Article  CAS  PubMed  Google Scholar 

  22. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320. doi:10.1039/C2CS35266D

    Article  CAS  PubMed  Google Scholar 

  23. Aarthi T, Madras G (2007) Photocatalytic degradation of rhodamine dyes with Nano-TiO2. Ind Eng Chem Res 46(1):7–14. doi:10.1021/ie060948n

    Article  CAS  Google Scholar 

  24. Yu K, Yang S, He H, Sun C, Gu C, Ju Y (2009) Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J Phys Chem A 113(37):10024–10032

    Article  CAS  PubMed  Google Scholar 

  25. Mahlambi MM, Mishra AK, Mishra SB, Krause RW, Mamba BB, Raichur AM (2013) The effect of metal-ions (Ag, Co, Ni and Pd) on the visible light degradation of rhodamine B by carbon covered alumina supported TiO2 in aqueous solutions. Ind Eng Chem Res 52(5):1783–1794. doi:10.1021/ie3025505

    Article  CAS  Google Scholar 

  26. Gao H, Lei L, Liu J, Kong Q, Chen X, HuZ (2004) The study on the interaction between human serum albumin and a new reagent with antitumor activity by spectrophotometric methods, J Photochem Photobiol A Chem 167:213–221. doi:10.1016/j.jphotochem.2004.05.017

  27. Khanchandani S, Kundu S, Patra A, Ganguli AK (2013) Band gap tuning of ZnO/In2S3 Core/Shell Nanorod arrays for enhanced visible-light-driven Photocatalysis. J Phys Chem C 117:5558–5567. doi:10.1021/jp310495j

    Article  CAS  Google Scholar 

  28. Yoffe AD (1993) Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 42:173–262. doi:10.1080/00018739300101484

    Article  CAS  Google Scholar 

  29. Thongtem T, Pilapong C, Thongtem S (2010) Large-scale synthesis of CuS hexaplates in mixed solvents using a solvothermal method. Mater Lett 64:111–114. doi:10.1016/j.matlet.2009.10.004

    Article  CAS  Google Scholar 

  30. Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19. doi:10.1016/S0169-409X(00)00118-6

    Article  CAS  PubMed  Google Scholar 

  31. Segota S, Curkovic L, Ljubas D, Vesna S, Ivona FH, Nenad T (2011) Synthesis, characterization and photocatalytic properties of sol-gel TiO2 films. Ceram Int 37:1153–1160. doi:10.1016/j.ceramint.2010.10.034

    Article  CAS  Google Scholar 

  32. Daneshvar N, Rabbani M, Modirshahla N, Behnajady MA (2004) Kinetic modelling of photocatalytic degradation of acid red 27 in UV/TiO2 process. J Photochem Photobiol A Chem 168:39–45. doi:10.1016/j.jphotochem.2004.05.011

    Article  CAS  Google Scholar 

  33. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. doi:10.1016/j.watres.2010.02.039

    Article  CAS  PubMed  Google Scholar 

  34. Bizarro M, Tapia-Rodrıguez MA, Ojeda ML, Alonsoa JC, Ortiz A (2009) Photocatalytic activity enhancement of TiO2 films by micro and nano-structured surface modification. Appl Surf Sci 255:6274–6278. doi:10.1016/j.apsusc.2009.01.094

    Article  CAS  Google Scholar 

  35. Ramasamy V, Praba K, Murugadoss G (2012) Synthesis and study of optical properties of transition metals doped ZnS nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 96:963–971. doi:10.1016/j.saa.2012.07.125

    Article  CAS  PubMed  Google Scholar 

  36. Chen Z, Xia Li X, Du G, Yu Q (2014) Photoluminescence spectra of ZnS:X− (X = F and I) nanoparticles synthesized via a solid-state reaction. Opt Mater 36:1007–1012. doi:10.1016/j.optmat.2014.01.002

    Article  CAS  Google Scholar 

  37. Lakowicz JR (2006) Principles of fluorescence spectroscopy, third edn. Springer Science + Business Media, New York

    Book  Google Scholar 

  38. Ayodhya D, Venkatesham M, Santoshi kumari A, Bhagavanth Reddy G, Ramakrishna D, Veerabhadram G (2015) Synthesis, characterization, fluorescence, photocatalytic and antibacterial activity of CdS nanoparticles using Schiff Base. J Fluoresc 25:1481–1492. doi:10.1007/s10895-015-1639-5

Download references

Acknowledgments

The authors thank the Head, Department of Chemistry, Osmania University for providing necessary facilities. One of the authors, D. Ayodhya wishes to acknowledge the CSIR-UGC, New Delhi for the award of SRF which supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guttena Veerabhadram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayodhya, D., Veerabhadram, G. Green Synthesis, Optical, Structural, Photocatalytic, Fluorescence Quenching and Degradation Studies of ZnS Nanoparticles. J Fluoresc 26, 2165–2175 (2016). https://doi.org/10.1007/s10895-016-1912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1912-2

Keywords

Navigation