Skip to main content
Log in

Microwave Assisted Synthesis, Optical Properties and Physicochemical Investigations on the Powerful Fluorophore: Donor (D) -π-Acceptor (A) Chalcone

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

(2E)-3-[4-(dimethylamino)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one (DPHP) was synthesized by the reaction 4(dimethylamino) benzaldehyde with 1-(2-hydroxyphenyl) ethanone under microwave irradiation. Structure of DPHP was conformed by 1H and 13C NMR, FT-IR, EI-MS spectral studies and elemental analysis. The electronic absorption and fluorescence spectra of DPHP have been studied in solvents of different polarities, and the data were used to study the solvatochromic properties such as extinction coefficient, stokes shift, oscillator strength, transition dipole moment, fluorescence quantum yield and photochemical quantum yield. The absorption maximum and fluorescence emission maximum was observed red shift when increase solvent polarity n-Hexane to DMF. DPHP undergoes solubilization in different micelles and may be used as a probe and quencher to determine the critical micelle concentration (CMC) of CTAB and SDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Moulton WN (1961) Dipole moments of symmetrical organic molecules. J Chem Educ 38(10):522–528

    Article  CAS  Google Scholar 

  2. Meyers F, Bredas JL (2004) Electronic structure and nonlinear optical properties of push–pull conjugated molecules. Int J Quantum Chem 42:1595–1614

    Article  Google Scholar 

  3. Akemann W, Laage D, Plaza P, Martin MM, Blanchard-Desce M (2008) Photoinduced intramolecular charge transfer in push-pull polyenes: effects of solvation, electron-donor group, and polyenic chain length. J Phys Chem B 17:358–368

    Article  Google Scholar 

  4. Loa C, Chena C, Tsaia TWT, Zhangb L, Limc T, Fannd W, Chana JCC, Luha TY (2010) Efficient energy and electron transfer between donor and acceptor chromophores in aluminophosphate hybrid materials. J Chin Chem Soc 57(3B):539–546

    Article  Google Scholar 

  5. Charlot M, Izard N, Mongin O, Riehl D, Blanchard-Desce M (2006) Optical limiting with soluble two-photon absorbing quadrupoles: structure–property relationships. Chem Phys Lett 417:297–302

    Article  CAS  Google Scholar 

  6. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., beta., and. gamma.) and bond length alternation. J Am Chem Soc 116:10703–10714

    Article  CAS  Google Scholar 

  7. Mallia AR, Salini PS, Hariharan M (2015) Nonparallel stacks of donor and acceptor chromophores evade geminate charge recombination. J Am Chem Soc 137:15604–15607

    Article  CAS  PubMed  Google Scholar 

  8. Zhu Z, Waller D, Gaudiana R, Morana M, Muhlbacher D, Scharber M, Brabec C (2007) Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules 40:1981–1986

    Article  CAS  Google Scholar 

  9. Tykwinski RR, Gubler U, Martin RE, Diederich F, Bosshard C, Gunter P (1998) Structure–property relationships in third-order nonlinear optical chromophores. J Phys Chem B 1998(102):4451–4465

    Article  Google Scholar 

  10. El-Daly AS, Asiri AM, Alamry KA, Obaid AY (2013) UV–visibleabsorption, fluorescencecharacteristicsandlaseractivity of (E, E)-2,5-bis(4-methoxystyryl)pyrazine(BMSP). J Lumin 139:69–78

    Article  CAS  Google Scholar 

  11. Asiri AM, Khan SA, Al-Amodi MS, Alamry KA (2012) Synthesis, characterization, absorbance, fluorescence and non linear optical properties of some donor acceptor chromophores. Bull Kor Chem Soc 33:1900–1906

    Article  CAS  Google Scholar 

  12. Yang Y, Bo S, Wang H, Liu F, Liu J, Qiu L, Zhen Z, Liu X (2015) Novel chromophores with excellent electro-optic activity based on double-donor chromophores by optimizing thiophene bridges. Dyes Pigments 122:139–146

    Article  CAS  Google Scholar 

  13. Ray D, Nag A, Goswami D, Bharadwaj PK (2009) Acyclic donor–acceptor–donor chromophores for large enhancement of two-photon absorption cross-section in the presence of Mg(II), Ca(II) or Zn(II) ions. J Lumin 129:256–262

    Article  CAS  Google Scholar 

  14. Sun Y, Xu S, Wu R, Wang Z, Zheng Z, Li J, Cui Y (2010) The synthesis, structure and photoluminescence of coumarin-based chromophores. Dyes Pigments 87:109–118

  15. Cao D, Zhang P, Liu P, Cui S, Sun N (2014) New conjugated cruciform chromophores with D-π-A structure: synthesis, characterization and theoretical calculation. J Mol Struct 1076:396–402

    Article  CAS  Google Scholar 

  16. Sun Y, Cui Y (2008) The synthesis, characterization and properties of coumarin-based chromophores containing a chalconemoiety. Dyes Pigments 78:65–76

    Article  CAS  Google Scholar 

  17. Fanzone M, Manzano SG, Alonso JP, Teresa M, Bailon E, Jofre V, Assof M, Santos-Buelga C (2015) Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside. Food Chem 175:166–173

    Article  CAS  PubMed  Google Scholar 

  18. Siddiqui ZN, Musthafa TNM, Ahmad A, Khan AU (2011) Thermal solvent-free synthesis of novel pyrazolyl chalcones and pyrazolines as potential antimicrobial agents. Bioorg Med Chem Lett 21:2860–2865

    Article  CAS  PubMed  Google Scholar 

  19. Bahrami K, Khodaei MM, Naali F, Yousefi BH (2013) Synthesis of polysubstituted pyridines via reactions of chalcones and malononitrile in alcohols using Amberlite IRA-400 (OH). Tetrahedron Lett 39:5293–5298

    Article  Google Scholar 

  20. Singh P, Anand A, Kumar V (2014) Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem 85:758–777

    Article  CAS  PubMed  Google Scholar 

  21. Bano S, Javed K, Ahmad S, Rathish IG, Singh S, Chaitanya M, Arunasree KM, Alam MS (2013) Synthesis of some novel chalcones, flavanones and flavones and evaluation of their anti-inflammatory activity. Eur J Med Chem 65:51–59

    Article  CAS  PubMed  Google Scholar 

  22. Wan M, Xu L, Hua L, Li A, Li S, Lu W, Pang Y, Cao C, Liu X, Jiao P (2014) Synthesis and evaluation of novel isoxazolyl chalcones as potential anticancer agents. Bioorg Chem 54:38–43

    Article  CAS  PubMed  Google Scholar 

  23. Rani M, Mohamad Y (2014) Synthesis, studies and in vitro antibacterial activity of some 5-(thiophene-2-yl)-phenyl pyrazoline derivatives. J Saudi Chem Soc 18:411–417

    Article  Google Scholar 

  24. Delavaux-Nicot B, Maynadie J, Lavabre D, Fery-Forgues S (2007) Two electroactive ferrocenyl chalcones as original optical chemosensors for Ca2+ and Ba2+ cations in CH3CN. J Organomet Chem 692:3351–3362

    Article  CAS  Google Scholar 

  25. Li H, Shi Y, Yin H, Wang Y, Cong L, Jin M, Ding D (2015) New insights into the solvent-assisted excited-state double proton transfer of 2-(1H-pyrazol-5-yl)pyridine with alcoholic partners: a TDDFT investigation. Spectro Chem Acta A 141:211–215

    Article  CAS  Google Scholar 

  26. Choi JY, Park EJ, Chang SH, Kang TJ (2009) Solvent effects on the solvatochromism of 7-aminocoumarin derivatives in neat and binary solvent mixtures: correlation of the electronic transition energies with the solvent polarity parameters. Bull Kor Chem Soc 30:1452–1458

    Article  CAS  Google Scholar 

  27. Krystkowiak E, Maciejewski A (2011) Changes in energy of three types of hydrogen bonds upon excitation of aminocoumarins determined from absorption solvatochromic experiments. Phys Chem Chem Phys 13:11317–11324

    Article  CAS  PubMed  Google Scholar 

  28. Nandy R, Sankararaman S (2010) Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission. Beilstein J Org Chem 6:992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Talone CJ, Gao J, Lynch JR, Tanu RM, Deyrup ST (2016) Determination of the ground- and excited-state dipole moments of bromocresol purple in protic and aprotic solvents. Spectrochim Acta A 156:138–142

    Article  CAS  Google Scholar 

  30. Qiao Y, Chen J, Yi X, Duan W, Gao B, Wu Y (2015) Highly fluorescent perylene dyes with large stokes shifts: synthesis, photophysical properties, and live cell imaging. Tetrahedron Lett 56:2749–2753

    Article  CAS  Google Scholar 

  31. Thiare DD, Khonte A, Diop A, Cisse L, Coly A, Tine A, Delattre F (2015) Determination of ground and excited state dipole moments of amino-benzimidazole by solvatochromic shift methods and theoretical calculations. J Mol Liq 211:640–646

    Article  CAS  Google Scholar 

  32. Sıdır YG, Sıdı I (2011) Solvatochromic fluorescence of 4-alkoxybenzoic acid liquid crystals: ground and excited state dipole moments of monomer and dimer structures determined by solvatochromic shift methods. J Mol Liq 211:591–603

    Google Scholar 

  33. Nagaraja D, Melavanki RM, Patil NR, Kusanur RA (2014) Solvent effect on the relative quantum yield and fluorescence quenching of 2DAM. Spectrochim Acta A 130:122–128

    Article  CAS  Google Scholar 

  34. Mallet C, Bolduc A, Bishop S, Gautier Y, Skene WG (2014) Unusually high fluorescence quantum yield of a homopolyfluorenylazomethine – towards a universal fluorophore. Phys Chem Chem Phys 16:24382–24390

    Article  CAS  PubMed  Google Scholar 

  35. Khan SA, Asiri AM (2016) Physicochemical, photophysical investigation and micellization of 1-(2,5-dimethylfuran-3-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (DFTP) dye by fluorophotometry. J Mole Liq 216:4323–4428

  36. El-Daly SA, Asiri AM, Alamry K, Khan SA (2013) Spectroscopic studies and laser activity of 3-(4-dimethylamino-phenyl)-1-(2,5-dimethyl-furan-3-yl)-propenone (DDFP): a new green laser dye. J Lumin 137:6–14

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Chemistry Department and the Center of Excellence for Advanced Materials Research at King Abdulaziz University for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman A. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.A., Asiri, A.M. & Aqlan, F.M.S. Microwave Assisted Synthesis, Optical Properties and Physicochemical Investigations on the Powerful Fluorophore: Donor (D) -π-Acceptor (A) Chalcone. J Fluoresc 26, 2133–2140 (2016). https://doi.org/10.1007/s10895-016-1909-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1909-x

Keywords

Navigation