Skip to main content
Log in

Probing the Influence of Amino Acids on Photoluminescence from Carbon Nanotubes Suspended with DNA

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The quantitative analysis of amino acid levels in the human organism is required for the early clinical diagnosis of a variety of diseases. In this work the influence of 13 amino acid doping on the photoluminescence (PL) from the semiconducting single-walled carbon nanotubes (SWNTs) suspended with single-stranded DNA (ssDNA) in water has been studied. Amino acid doping leads to the PL enhancement and the strongest increase was found after cysteine doping of the nanotube suspension while addition of other amino acids yielded the significantly smaller effect. The emphasis of cysteine molecules is attributed to presence of the reactive thiol group that turns cysteine into reducing agent that passivates the p-defects on the nanotube sidewall and increases the PL intensity. The reasons of PL enhancement after doping with other amino acids are discussed. The response of nanotube PL to cysteine addition depends on the nanotube aqueous suspension preparation with tip or bath sonication treatment. The enhancement of the emission from different nanotube species after cysteine doping was analyzed too. It was shown that the increase of the carbon nanotube PL at addition of cysteine allows successful monitoring of the cysteine concentration in aqueous solution in the range of 50–1000 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65(15):1933–1950

    Article  CAS  PubMed  Google Scholar 

  2. Jain A, Homayoun A, Bannister CW, Yum K (2015) Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine. Biotechnol J 10:447–459

    Article  CAS  PubMed  Google Scholar 

  3. Ai N, Walden-Newman W, Song Q, Kalliakos S, Strauf S (2011) Suppression of blinking and enhanced exciton emission from individual carbon nanotubes. ACS Nano 5(4):2664–2670

    Article  CAS  PubMed  Google Scholar 

  4. Cognet L, Tsyboulski DA, Rocha J-D R, Doyle CD, Tour JM, Weisman RB (2007) Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316:1465–1468

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Boghossian AA, Barone PW, Rwei A, Kim J-H, Lin D, Heller DA, Hilmer AJ, Nair N, Reuel NF, Strano MS (2011) Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J Am Chem Soc 133(3):567–581

    Article  CAS  PubMed  Google Scholar 

  6. Wang F, Dukovic G, Brus LE, Heinz TF (2005) The optical resonances in carbon nanotubes arise from excitons. Science 308:838–841

    Article  CAS  PubMed  Google Scholar 

  7. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2007) Exciton photophysics of carbon nanotubes. Annu Rev Phys Chem 58:719–747

    Article  CAS  PubMed  Google Scholar 

  8. Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photonics 2:341–350

    Article  CAS  Google Scholar 

  9. Luer L, Hoseinkhani S, Polli D, Crochet J, Hertel T, Lanzani G (2009) Size and mobility of excitons in (6, 5) carbon nanotubes. Nat Phys 5:54–58

    Article  Google Scholar 

  10. Siitonen AJ, Tsyboulski DA, Bachilo SM, Weisman RB (2010) Dependence of exciton mobility on structure in single-walled carbon nanotubes. J Phys Chem Lett 1(14):2189–2192

    Article  CAS  Google Scholar 

  11. Georgi C, Bohmler M, Qian HH, Novotny L, Hartschuh A (2009) Probing exciton propagation and quenching in carbon nanotubes with near-field optical microscopy. Phys Status Solidi 246:2683–2688

    Article  CAS  Google Scholar 

  12. Yoshikawa K, Matsuda K, Kanemitsu Y (2010) Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy. J Phys Chem C 114:4353–4356

    Article  CAS  Google Scholar 

  13. Dukovic G, White BE, Zhou Z, Wang F, Jockusch S, Steigerwald ML, Heinz TF, Friesner RA, Turro NJ, Brus LE (2004) Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J Am Chem Soc 126:15269–15276

    Article  CAS  PubMed  Google Scholar 

  14. Lee AJ, Wang X, Carlson LJ, Smyder JA, Loesch B, Tu X, Zheng M, Krauss TD (2011) Bright fluorescence from individual single-walled carbon nanotubes. Nano Lett 11(4):1636–1640

    Article  CAS  PubMed  Google Scholar 

  15. Sen S, Sen F, Boghossian AA, Zhang J, Strano MS (2013) Effect of reductive dithiothreitol and trolox on nitric oxide quenching of single-walled carbon nanotubes. J Phys Chem C 117:593–602

    Article  CAS  Google Scholar 

  16. Kurnosov NV, Leontiev VS, Linnik AS, Lytvyn OS, Karachevtsev VA (2014) Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer. Chem Phys 438:23–30

    Article  CAS  Google Scholar 

  17. Kurnosov NV, Leontiev VS, Linnik AS, Karachevtsev VA (2015) Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes. Chem Phys Lett 623:51–54

    Article  CAS  Google Scholar 

  18. Polo E, Kruss S (2016) Impact of redox-active molecules on the fluorescence of polymer-wrapped carbon nanotubes. J Phys Chem C 120(5):3061–3070

    Article  CAS  Google Scholar 

  19. Pu F, Huang Z, Ren J, Qu X (2010) DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. Anal Chem 82:8211–8216

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, Yoon J (2012) Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem Soc Rev 41:52–67

    Article  CAS  PubMed  Google Scholar 

  21. Anand T, Sivaraman G, Chelappa D (2014) Quinazoline copper (II) ensemble as turn-on fluorescence sensor for cysteine and chemodosimeter for NO. J Photochem Photobiol A Chem 281:47–52

    Article  CAS  Google Scholar 

  22. Anand T, Sivaraman G, Chelappa D (2014) Hg2+ mediated quinazoline ensemble for highly selective recognition of cysteine. Spectrochim Acta A 123:18–24

    Article  CAS  Google Scholar 

  23. Sivaraman G, Anand T, Chellappa D (2014) A fluorescence switch for the detection of nitric oxide and histidine and its application in live cell imaging. Chem Plus Chem 79:1761–1766

    CAS  Google Scholar 

  24. Razi SS, Ali R, Srivastava P, Shahid M, Misra A (2014) An azo based colorimetric probe for the detection of cysteine and lysine amino acids and its real application in human blood plasma. RSC Adv 4:16999–17007

    Article  CAS  Google Scholar 

  25. Liu Y, Zhang S, Lv X, Sun YQ, Liu J, Guo W (2014) Constructing a fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on a novel cysteine-binding group but-3-yn-2-one. Analyst 139:4081–4087

    Article  CAS  PubMed  Google Scholar 

  26. Agostini A, Campos I, Milani M, Elsayed S, Pascual L, Martinez-Manez R, Licchelli M, Sancenon F (2014) A surfactant-assisted probe for the chromofluorogenic selective recognition of GSH in water. Org Biomol Chem 12:1871–1874

    Article  CAS  PubMed  Google Scholar 

  27. Yu D, Zhang Q, Ding S, Feng G (2014) A colorimetric and near-infrared fluorescent probe for biothiols and its application in living cells. RSC Adv 4:46561–46567

    Article  CAS  Google Scholar 

  28. Balkrishna SJ, Hodage AS, Kumar S, Panini P, Kumar S (2014) Sensitive and regenerable organochalcogen probes for the colorimetric detection of thiols. RSC Adv 4:11535–11538

    Article  CAS  Google Scholar 

  29. Liu J, Sun YQ, Zhang H, Huo Y, Shib Y, Guo W (2014) Simultaneous fluorescent imaging of Cys/Hcy and GSH from different emission channels. Chem Sci 5:3183–3188

    Article  CAS  Google Scholar 

  30. Alvarez WE, Pompeo F, Herrera JE, Balzano L, Resasco DE (2002) Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co−Mo catalysts. Chem Mater 14:1853–1858

    Article  CAS  Google Scholar 

  31. Karachevtsev VA, Glamazda AY, Plokhotnichenko AM, Leontiev VS, Linnik AS (2011) Comparative study on protection properties of SDS, SDBS and DNA covering of single-walled carbon nanotubes against pH influence: luminescence and absorption spectroscopy study. Mater Werkst 42:41–46

    Article  CAS  Google Scholar 

  32. Gladchenko GO, Karachevtsev MV, Leontiev VS, Valeev VA, Glamazda AY, Plokhotnichenko AM, Stepanian SG (2006) Interaction of fragmented double-stranded DNA with carbon nanotubes in aqueous solution. Mol Phys 104:3193–3201

    Article  CAS  Google Scholar 

  33. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Article  PubMed  Google Scholar 

  34. Karachevtsev VA, Plokhotnichenko AM, Glamazda AY, Leontiev VS, Levitsky IA (2014) Excitonic energy transfer in polymer wrapped carbon nanotubes in gradually grown nanoassemblies. Phys Chem Chem Phys 16:10914–10922

    Article  CAS  PubMed  Google Scholar 

  35. He Z, Zhou J (2014) Probing carbon nanotube–amino acid interactions in aqueous solution with molecular dynamics simulations. Carbon 78:500–509

    Article  CAS  Google Scholar 

  36. Fernandez-Merino MJ, Villar-Rodil S, Paredes JI, Solis-Fernandez P, Guardia L, Garcia R, Martinez-Alonso A, Tascon JMD (2013) Identifying efficient natural bioreductants for the preparation of graphene and graphene-metal nanoparticle hybrids with enhanced catalytic activity from graphite oxide. Carbon 63:30–44

    Article  CAS  Google Scholar 

  37. Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymer 4:275–295

    Article  Google Scholar 

  38. Huang YY, Knowles TPJ, Terentjev EM (2009) Strength of nanotubes, filaments, and nanowires from sonication-induced scission. Adv Mater 21:3945–3948

    Article  CAS  Google Scholar 

  39. Hennrich F, Krupke R, Arnold K, Rojas Stutz JA, Lebedkin S, Koch T, Schimmel T, Kappes MM (2007) The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J Phys Chem B 111:1932–1937

    Article  CAS  PubMed  Google Scholar 

  40. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos Part A 41:1345–1367

    Article  Google Scholar 

  41. Kaniowska E, Chwatko G, Głowacki R, Kubalczyk P, Bald E (1998) Urinary excretion measurement of cysteine and homocysteine in the form of their S-pyridinium derivatives by high-performance liquid chromatography with ultraviolet detection. J Chromatogr A 798:27–35

    Article  CAS  PubMed  Google Scholar 

  42. Thomsen Ch, Reich S (2007) Raman scattering in carbon nanotubes. In: Cardona M, Merlin R (eds) Light scattering in solid IX, Topics Appl. Physics 108, Springer-Verlag, Berlin Heidelberg, pp. 115–232

  43. Simmons JM, Nichols BM, Baker SE, Marcus MS, Castellini OM, Lee C-S, Hamers RJ, Eriksson MA (2006) Effect of ozone oxidation on single-walled carbon nanotubes. J Phys Chem B 110:7113–7118

    Article  CAS  PubMed  Google Scholar 

  44. Picozzi S, Santucci S, Lozzi L, Valentini L, Delley B (2004) Ozone adsorption on carbon nanotubes: the role of stone-wales defects. J Chem Phys 120:7147–7152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the grants of National Academy of Sciences of Ukraine (Grant N 0114U001070 and Grant N 15/16H) and by the National program under Agreement on scientific cooperation with the Academy of Science of Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Karachevtsev.

Electronic supplementary material

ESM 1

(DOC 1221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurnosov, N.V., Leontiev, V.S. & Karachevtsev, V.A. Probing the Influence of Amino Acids on Photoluminescence from Carbon Nanotubes Suspended with DNA. J Fluoresc 26, 1951–1958 (2016). https://doi.org/10.1007/s10895-016-1888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1888-y

Keywords

Navigation