Skip to main content
Log in

Preparation of Different Substitued Polypyridine Ligands, Ruthenium(II)-Bridged Complexes and Spectoscopıc Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Novel different substitued polypyridine ligands 4-((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)phenoxy)methyl)benzaldehyde (BA-PPY), (E)-N-(4-((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)phenoxy)methyl)benzylidene)-pyrene-4-amine (PR-PPY), (E)-N-(4-((4-(1H-imidazo[4,5-f][1,10] phenanthroline-2-yl)phenoxy)methyl)benzylidene)-1,10-phenanthroline-5amine (FN-PPY), 2-(4-(bromomethyl)phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (BR-PPY), 2-(4-(azidomethyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (N3-PPY) and triazole containing polypyridine ligand 3,4-bis[(4-(metoxy)-1,2,3-triazole)1-methylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline)] benzaldehyde (BA-DIPPY) and Ruthenium(II) complexes were synthesized and characterized. Their photopysical properties were investigated. The complexes RuP(PR-PPY), RuB(PR-PPY, RuP(FN-PPY) and RuB(FN-PPY) exhibited a broad absorption bands at 485, 475, 476, and 453 nm, respectively, assignable to the spin-allowed MLCT (dπ–π*) transition. The emission maxima of the pyrene-appended polypyridine ligand PR-PPY was observed at λems = 616 nm and the phenanthroline-appended polypyridine ligand FN-PPY was observed at λems = 668 nm. And the emission maxima of the complexes RuP(PR-PPY), RuB(PR-PPY), RuP(FN-PPY) and RuB(FN-PPY) were observed at λems = 646, 646, 685 and 685 nm, respectively. As seen in fluorescence spectra, the fluorescence intensities of the ligands are higher than their metal complexes. This is because of quenching effect of Ruthenium(II) metal on chromophore groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Diagram 1
Diagram 2

Similar content being viewed by others

References

  1. Yilmaz Obali A, Ucan HI (2015) J Fluoresc 25:647–655

    Article  Google Scholar 

  2. Kursunlu AN (2015) RSC Adv 5(51):41025–41032

    Article  CAS  Google Scholar 

  3. Kursunlu AN (2015) Tetrahedron Lett 56:1873–1877

    Article  CAS  Google Scholar 

  4. Devi CS, Satyanarayana S (2012) J Coord Chem 65(3):474–486

    Article  CAS  Google Scholar 

  5. Kursunlu AN (2014) RSC Adv 4(88):47690–47696

    Article  CAS  Google Scholar 

  6. Xiong Y, Ji L-N (1999) Coord Chem Rev 185–186:711–733

    Article  Google Scholar 

  7. Balzani V, Juris A (2001) Coord Chem Rev 211:97–115

    Article  CAS  Google Scholar 

  8. Cheng F, Tang N, Chen J, Wang F, Chen L (2010) Inorg Chem Commun 13:757–761

    Article  CAS  Google Scholar 

  9. Chao H, Qiu Z-R, Cai L-R, Zhang H, Li X-Y, K.-S.Wong, Ji L-N (2003) Inorg Chem 42(26):8600–8910

    Article  Google Scholar 

  10. Cheng F, Tang N, Chen J, Chen L, Jia L, Chen G (2010) Inorg Chem Commun 13:258–261

    Article  CAS  Google Scholar 

  11. Yilmaz Obali A, Ucan HI (2012) J Fluoresc 22:1357–1370

    Article  Google Scholar 

  12. Zhenga Z-B, Duana Z-M, Zhanga J-X, Wang K-Z (2012) Sensors Actuators B 169:312–319

    Article  Google Scholar 

  13. Ziessel R (2001) Coord Chem Rev 216–217:195–223

    Article  Google Scholar 

  14. Wang X-L, Chen Y-Q, Liu G-C, Zhang J-X, Lin H-Y, Chen B-K (2010) Inorg Chim Acta 363:773–778

    Article  CAS  Google Scholar 

  15. Lodeiro C, Limaa JC, Parola AJ, Seixas de Melo JS, Capelo JL, Covelo B, Tamayoa A, Pedras B (2006) Sensors Actuators B 115:276–286

    Article  CAS  Google Scholar 

  16. Kursunlu AN, Güler E (2013) Supramol Chem 25(8):512–521

    Article  CAS  Google Scholar 

  17. Fleischel O, Wu N, Petitjean A (2010) Chem Commun 46:8454–8456

    Article  CAS  Google Scholar 

  18. Zheng RH, Guo HC, Jiang HJ, Xu KH, Liu BB, Sun WL, Shen ZQ (2010) Chin Chem Lett 21:1270–1272

    Article  CAS  Google Scholar 

  19. Lenaerts P, Storms A, Mullens J, D’Haen J, Görller-Walrand C, Binnemans K, Driesen K (2005) Chem Mater 17:5194–5201

    Article  CAS  Google Scholar 

  20. Ji Z, Huang SD, Guadalupe AR (2000) Inorg Chim Acta 305:127–134

    Article  CAS  Google Scholar 

  21. Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17(12):3334–3341

    Article  CAS  Google Scholar 

  22. Jing L, Dingmei Z, Xun Z, Zhenjian H, Shu L, Mengfeng L, Jiyan P, Yongcheng L (2011) Mar. Drugs 9:1887–1901

    Google Scholar 

  23. Rose MJ, Patra AK, Alcid EA, Olmstead MM, Mascharak PK (2007) Inorg Chem 46(6):2328–2338

    Article  CAS  PubMed  Google Scholar 

  24. Kumar P, Sain B, Jain SL (2014) J Mater Chem A 2:11246–11253

    Article  CAS  Google Scholar 

  25. Rillema DP, Mack KB (1982) Inorg Chem 21:3849–3854

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Scientific Research Projects Foundation of Selcuk University (SUBAP) (Konya/TURKEY) for financial support of this work produced from a part of Aslıhan YILMAZ OBALI’s PhD Thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslihan Yilmaz Obali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obali, A.Y., Ucan, H.I. Preparation of Different Substitued Polypyridine Ligands, Ruthenium(II)-Bridged Complexes and Spectoscopıc Studies. J Fluoresc 26, 1685–1697 (2016). https://doi.org/10.1007/s10895-016-1859-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1859-3

Keywords

Navigation