Skip to main content
Log in

Selective Determination of Atropine Using poly Dopamine-Coated Molecularly Imprinted Mn-Doped ZnS Quantum Dots

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, a selective method for the determination of atropine in pharmaceutical formulations was proposed. L-cysteine capped Mn-doped ZnS quantum dots (QDs) were prepared in an in-situ method using sodium thiosulfate precursor and characterized by spectrofluorometer, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM) and X-ray diffractometer (XRD). Dopamine hydrochloride was used as a precursor for preparation of poly dopamine-coated molecularly imprinted Mn-doped ZnS quantum dots. Finally, these prepared molecularly imprinted Mn-doped ZnS quantum dots were used for determination of atropine in pharmaceutical formulations. The obtained linear range for determination of atropine was in the range of 2 × 10−8 – 7 × 10−6 M, with a correlation coefficient (R2) of 0.9889; and the detection limit (S/N = 3) was 3.2 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Okuda T, Nishida M, Sameshima I, et al. (1991) Determination of atropine in biological specimens by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 567:141–149

    Article  CAS  Google Scholar 

  2. Zárate R, Hermosin B, Cantos M, Troncoso A (1997) Tropane alkaloid distribution in Atropa Baetica plants. J Chem Ecol 23:2059–2066

    Article  Google Scholar 

  3. Schmidt GC, Eling TE, Drach JC (1967) Synthesis of tropine-labeled atropine I. Micro methods for the synthesis of tropine and for its esterification with tropic acid. J Pharm Sci 56:215–221

    Article  CAS  PubMed  Google Scholar 

  4. Azizi SN, Chaichi MJ, Shakeri P, Bekhradnia A (2013) Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers. J Lumin 144:34–40. doi:10.1016/j.jlumin.2013.05.054

    Article  CAS  Google Scholar 

  5. Hoefnagel D (1961) Toxic effects of atropine and homatropine eyedrops in children. N Engl J Med 264:168–171

    Article  CAS  PubMed  Google Scholar 

  6. HSDB database, U.S. national libraray of medicine.

  7. Lau O-W, Mok C-S (1997) High-performance liquid chromatographic determination of atropine and atropine-like alkaloids in pharmaceutical preparations with indirect conductometric detection. J Chromatogr A 766:270–276

    Article  CAS  Google Scholar 

  8. Yuan B, Zheng C, Teng H, You T (2010) Simultaneous determination of atropine, anisodamine, and scopolamine in plant extract by nonaqueous capillary electrophoresis coupled with electrochemiluminescence and electrochemistry dual detection. J Chromatogr A 1217:171–174

    Article  CAS  PubMed  Google Scholar 

  9. Greenwood PA, Merrin C, McCreedy T, Greenway GM (2002) Chemiluminescence μTAS for the determination of atropine and pethidine. Talanta 56:539–545

    Article  CAS  PubMed  Google Scholar 

  10. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  CAS  PubMed  Google Scholar 

  11. Kriz D, Kempe M, Mosbach K (1996) Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors. Sensors Actuators B Chem 33:178–181

    Article  CAS  Google Scholar 

  12. Turiel E, Martín-Esteban A, Tadeo JL (2007) Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils. J Chromatogr A 1172:97–104

    Article  CAS  PubMed  Google Scholar 

  13. Sellergren B, Allender CJ (2005) Molecularly imprinted polymers: a bridge to advanced drug delivery. Adv Drug Deliv Rev 57:1733–1741

    Article  CAS  PubMed  Google Scholar 

  14. Lettau K, Warsinke A, Katterle M, et al. (2006) A bifunctional molecularly imprinted polymer (MIP): analysis of binding and catalysis by a thermistor. Angew Chem Int Ed 45:6986–6990

    Article  CAS  Google Scholar 

  15. Henry OYF, Cullen DC, Piletsky SA (2005) Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review. Anal Bioanal Chem 382:947–956

    Article  CAS  PubMed  Google Scholar 

  16. Tan L, Kang C, Xu S, Tang Y (2013) Selective room temperature phosphorescence sensing of target protein using Mn-doped ZnS QDs-embedded molecularly imprinted polymer. Biosens Bioelectron 48:216–223. doi:10.1016/j.bios.2013.04.024

    Article  CAS  PubMed  Google Scholar 

  17. Wu P, He Y, Wang H-F, Yan X-P (2010) Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids. Anal Chem 82:1427–1433

    Article  CAS  PubMed  Google Scholar 

  18. Yang YJ, Xiang JW (2005) Template-free synthesis of CuS nanorods with a simple aqueous reaction at ambient conditions. Appl Phys A Mater Sci Process 81:1351–1353. doi:10.1007/s00339-005-3292-3

    Article  CAS  Google Scholar 

  19. Ai M, Hickernell FJ, Lin DKJ (2008) Optimal foldover plans for regular s-level fractional factorial designs. Stat Probab Lett 78:896–903

    Article  Google Scholar 

  20. Rahmanian B, Pakizeh M, Ali S, et al. (2011) Application of experimental design approach and artificial neural network ( ANN ) for the determination of potential micellar-enhanced ultrafiltration process. J Hazard Mater 187:67–74. doi:10.1016/j.jhazmat.2010.11.135

    Article  CAS  PubMed  Google Scholar 

  21. Samadi-Maybodi A, Sadeghi-Maleki M-R (2015) In-situ synthesis of high stable CdS quantum dots and their application for photocatalytic degradation of dyes. Spectrochim Acta Part A Mol Biomol Spectrosc 152:156–164

    Article  Google Scholar 

  22. Warren BE (1969) X-ray diffraction. Courier Corporation

  23. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

    Article  CAS  Google Scholar 

  24. Zhang M, Zhang X, He X, Zhang Y (2012) A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale 4:3141–3147. doi:10.1039/c2nr30316g

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolraouf Samadi-Maybodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasifar, J., Samadi-Maybodi, A. Selective Determination of Atropine Using poly Dopamine-Coated Molecularly Imprinted Mn-Doped ZnS Quantum Dots. J Fluoresc 26, 1645–1652 (2016). https://doi.org/10.1007/s10895-016-1853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1853-9

Keywords

Navigation