Skip to main content
Log in

Fluorescence and Textural Characterization of Ortho-Amine Tetraphenylporphyrin Covalently Bonded to Organo–Modified Silica Xerogels

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Most of the studies performed with porphyrins involve these species functionalized with peripheral substituents lying on the same macrocyclic molecular plane. The main objective of this work deals with the successful preservation and optimization of the fluorescence of a uncommonly used porphyrin species, i.e. tetrakis-(ortho-amino-phenyl)-porphyrin; a molecule with substituents localized not only at one but at both sides of its molecular plane. In cases like this, it must be stressed that fluorescence can only be partially preserved; nevertheless, intense fluorescence can still be reached by following a twofold functionalization strategy involving: (i) the bonding of substituted macrocycles to the pore walls of (ii) organo-modified silica monoliths synthesized by the sol–gel method. The analysis of both absorption and emission UV spectra evidenced a radiation energy transfer taking place between the porphyrin and the host silica matrix. Our results showed that the adequate displaying of the optical properties of macrocyclic species trapped in SiO2 xerogels depend on the polarity existing inside the pores, a property which can be tuned up through the adequate selection of organic groups used to modify the surface of the pore cavities. Additionally, the pore widths attained in the final xerogels can vary depending on the identity of the organic groups attached to the network. All these facts finally demonstrated that, even if using inefficient surface functionalization species, such as ortho-substituted tetraphenylporphyrins, it is still possible to modulate the pore shape, pore size, and physicochemical environment created around the trapped macrocycles. The most important aspect related to this research deals with the fact that the developed methodology offers a real possibility of controlling both the textural and morphological characteristics of a new kind of hybrid porous materials and to optimize the physicochemical properties of diverse active molecules trapped inside the pores of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Berezin BD (1962) The thermodynamic characteristics of Phthalocyuanines in Aulphuric acid solutions. Russ J Inorg Chem 7:1300–1303

    Google Scholar 

  2. Smith KM (1976) Porphyrins and Metalloporphyrins. Elsevier Scientific Publishing Co, Amsterdam

    Google Scholar 

  3. Dolphin D (1979) The porphyrins, physical chemistry, part a and B. Academic Press, New York

    Google Scholar 

  4. Milgrom RL (1997) The colour of life; an introduction to the chemistry of porphyrins and related compounds. Oxford University Press, Oxford

    Google Scholar 

  5. Darwent JR, Douglas P, Harriman A, Porter G, Richoux MC (1982) Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord Chem Rev 44:83–126

    Article  CAS  Google Scholar 

  6. Bedioui F (1995) Zeolite-encapsulated and clay-intercalated metal porphyrin, Phthalocyanine and Schiff-base Complexes as Models for Biomimetic Oxidation Catalysts: An Overview. Coord Chem Rev 144:39–68

    Article  CAS  Google Scholar 

  7. Friedrich J, Wolfrum H, Haarer D (1982) Photochemical holes: a spectral probe of the amorphous state in the optical domain. J Chem Phys 77:2309–2316

    Article  CAS  Google Scholar 

  8. Friedrich J, Wolfrum H, Haarer D (1992) Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines. Appl Phys B Lasers Opt 54(1):46–51

    Article  Google Scholar 

  9. Kamitani K, Uo M, Inoue H, Makishima A (1993) Synthesis and spectroscopy of TPP’S-doped silica gels by the Sol–gel process. J Sol-Gel Sci Technol 1:85–92

    Article  CAS  Google Scholar 

  10. Wang XJ, Yates LM III, Knobbe ET (1994) Study of nonlinear absorption in Metalloporphyrin-doped Sol–gel materials. J Lumin 60–61:469–473

    Article  Google Scholar 

  11. Dunbar ADF, Brittle S, Richardson TH, Hutchinson J, Hunter CA (2010) Detection of volatile organic compounds using porphyrin derivatives. J Phys Chem B 114:11697–11702

    Article  CAS  PubMed  Google Scholar 

  12. Nakagawa K, Aono T, Ueda G, Tsutsumi C, Hayase N, Manuchi M, Sadaoka Y (2005) Development of an eco-friendly optical sensor element based on tetraphenylporphyrin derivative disperse in biodegradable polymer: effects of substituents of tetraphenyl-porphyrins on HCl detection and diodegradation. Sensors Actuators B Chem 108:542–546

    Article  CAS  Google Scholar 

  13. Borisov SM, Lehner P, Klimant I (2011) Novel optical trace oxygen sensors based on platinum(II) and palladium(II) pomplexes with 5,10,15,20-Meso-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin covalently inmobilized on silica-gel particles. Anal Chim Acta 690:108–115

    Article  CAS  PubMed  Google Scholar 

  14. Radhakrishnan A, Rejani P, Beena B (2014) Synthesis, characterization and antimicrobial properties of CuO nanoparticles against gram-positive and gram-negative bacterial strains. Int J Nano Dimens 5(6):519–524

    Google Scholar 

  15. Messaoud M, Chadeau E, Brunon C, Ballet T, Rappenne L, Roussel F, Leonard D, Oulahal N, Langlet M (2010) Photocatalytic generation of silver nanoparticles and application to the antibacterial functionalization of textile fabrics. J. Photochem Photobiol A Chem 215:147–156

    Article  CAS  Google Scholar 

  16. Harriman A (1980) Luminescence of porphyrins and Metalloporphyrins part I. J Che Soc Faraday Trans 1 76:1979–1985; Part II, 1981, 77:369; Part III 1981, 77:1281–1291

  17. Sternberg ED, Dolphin D, Brickner C (1998) Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202

    Article  CAS  Google Scholar 

  18. Lavi A, Weitman H, Holmes RT, Smith KM, Ehrenberg B (2002) The depth of porphyrin in a membrane and the membrane’s physical properties affect the photosensitizing efficiency. Biophys J 82:2101–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dougherty TJ, Thoma RE, Boyle D, Weishaupt KR (1980) Photoradiation therapy for the treatment of malignant tumors: role of the laser. In: Pratesi R, Sacchi CA (eds) Laser in photomedicine and photobiology. Springer, New York, pp. 67–75

    Chapter  Google Scholar 

  20. Huang H, Song W, Rieffel J, Lovell JF (2015) Emerging applications of porphyrins in Photomedidine. Front Phys 3(23):1–15

    Article  Google Scholar 

  21. Malik Z, Landan H, Erenberg B, Nitzan Y (1992) Bacterial and viral Photodinamic inactivation. In: Henderson BW, Dougherty TJ (eds) Photodynamic Theraphy: medical applications. Marcel Dekker Inc. New York, Buffalo, pp. 97–113

    Google Scholar 

  22. Weizman E, Rothman CH, Greenbaum L, Shainberg A, Adamek M, Ehrenberg B, Malik Z (2000) Mitocondrial localization and photodamage during photodynamic therapy with tetraphenylporphines. J Photochem Photobiol B 59:92–102

    Article  CAS  PubMed  Google Scholar 

  23. Reddi E, Ceccon M, Valduga G, Jori G, Bommer JC, Elisei F, Latterini L, Mazzucato U (2002) Photophysical properties and antibacterial activity of meso-substituted cationic porphyrins. Photochem Photobiol 75:462–470

    Article  CAS  PubMed  Google Scholar 

  24. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010) “Chimie douce”: a land of opportunities for the designed construction of functional inorganic and hybrid organic–inorganic nanomaterials. C R Chim 13:3–39

    Article  CAS  Google Scholar 

  25. Levy D, Reisfeld R, Avnir D (1984) Fluorescence of europium (III) trapped in silica gel-glass as a probe for cation binding and for changes in cage symmetry during gel dehydration. Chem Phys Lett 109:593–597

    Article  CAS  Google Scholar 

  26. Pouxviel JC, Dunn B, Zink JI (1989) Fluorescence study of aluminosilicate sols and gels doped with hydroxy trisulfonated pyrene. J Phys Chem 93:2134–2139

    Article  CAS  Google Scholar 

  27. Miller JM, Dunn B, Valentine JS, Zink JI (1996) Synthesis conditions for encapsulating cytochrome c and catalase in SiO2 Sol–gel materials. J Non-Cryst Solids 202:279–289

    Article  CAS  Google Scholar 

  28. Campostrini R, Carturan G, Caniato R, Piovan A, Filippini R, Innocenti G, Cappelletti EM (1996) Immobilization of plant cells in hybrid sol–gel materials. J Sol-Gel Sci Technol 7:87–97

    Article  CAS  Google Scholar 

  29. Nassif N, Roux C, Coradin T, Rager MN, Bouvet OMM, Livage J (2003) A sol–gel matrix to preserve the viability of encapsulated bacteria. J Mater Chem 13:203–208

    Article  CAS  Google Scholar 

  30. García-Sánchez MA, Campero A (1998) aggregation properties of metallic tetrasulphophtalocyanines encapsulated in sol–gel materials. J Sol-Gel Sci Technol 37:651–655

    Article  Google Scholar 

  31. García-Sánchez MA, Campero A (2000) Aggregation properties of metallic tetrasulfophthalocyanines embedded in sol–gel silica. Polyhedron 19:2383–2386

    Article  Google Scholar 

  32. García-Sánchez MA, Campero A (2001) Insertion of lanthanide porphyrins in silica gel. J Non-Cryst Solids 296:50–56

    Article  Google Scholar 

  33. García-Sánchez MA, Tello-Solís SR, Sosa-Fonseca R, Campero A (2006) Fluorescent porphyrins trapped in monolithic SiO2 gels. J Sol-Gel Sci Technol 37:93–97

    Article  Google Scholar 

  34. García-Sánchez MA, de la Luz V, Estrada-Rico ML, Murillo-Martínez MM, Coahuila-Hernández MI, Sosa-Fonseca R, Tello-Solís SR, Rojas F, Campero A (2009) Fluorescent porphyrins covalently bound to silica xerogel matrices. J Non-Cryst Solids 355:120–125

    Article  Google Scholar 

  35. García-Sánchez MA, de la Luz V, Coahuila-Hernández MI, Rojas-González F, Tello-Solís SR, Campero A (2011) Effects of the structure of entrapped substituted porphyrins on the textural characteristics of silica network. J Photochem Photobiol A Chem 223:172–181

    Article  Google Scholar 

  36. González-Santiago B, García-Sánchez MA (2011) Macrocycle–pore network interactions: aluminum tetrasulfophthalocyanine in organically modified silica. J Non Cryst Solids 357:3168–3175

    Article  Google Scholar 

  37. Quiroz-Segoviano RIY, Garcia-Sánchez MA, Rojas-González F (2012) Cobalt porphyrin covalently bonded to organo modified silica xerogels. J Non-Cryst Solids 358:2868–2876

    Article  CAS  Google Scholar 

  38. Quiroz-Segoviano RIY, Serratos IN, Rojas-González F, Tello-Solís SR, Sosa-Fonseca R, Medina-Juarèz O, Menchaca-Campos C, García-Sánchez MA (2014) On tunin fluorescence emission of porphyrins fee bases bonded to the pore walls of organo-modiffied silica. Molecules 19(2):2261–2285

    Article  PubMed  Google Scholar 

  39. Hambright P, Gore T, Burton M (1976) Synthesis and characterization of new isomeric water-soluble porphyrins. Tetra(2-N-methylpyridyl)porphine and tetra(3- N-methylpyridyl)porphine. Inorg Chem 15(9):2314–2315

    Article  CAS  Google Scholar 

  40. Reid JB, Hambright P (1977) Kinetics of copper incorporation into tetra(2-N–methylpyridyl)porphine. Effects of basicity on rate. Inorg Chem 16:968–969

    Article  CAS  Google Scholar 

  41. Shamim A, Hambright P (1980) An equilibrium and kinetic study of water-soluble cadmium porphyrins. Inorg Chem 19:564–566

    Article  CAS  Google Scholar 

  42. Kim JB, Leonard JJ, Longo FR (1972) A mechanistic study of the synthesis and spectral properties of meso-tetraphenylporphyrin. J Am Chem Soc 94:3986–3992

    Article  CAS  PubMed  Google Scholar 

  43. Egorova GD, Knyukshto VN, Solovev KN, Tsvirko MP (1980), Intramolecular spin-orbital perturbations in ortho- and meta-halogeno-derivatives of tetraphenylporphin Opt Spectrosc (USSR) 48(6):602–7; Opt Spectrosc (english translation) 1980 48;1101–1109.

  44. Rothemund P (1936) Porphyrin studies III, the structure of the porphine ring system. J Am Chem Soc 61:2912–2915

    Article  Google Scholar 

  45. Adler AD, Longo FR, Finarelli JD, Goldmacher J, Assour J, Korsakoff L (1967) A simplified synthesis for meso-tetraphenylporphin. J Organomet Chem 32(2):476–476

    Article  CAS  Google Scholar 

  46. Adler AD, Logo FR, Kampas F, Kim J (1970) On the preparation of metalloporphyrins. J Inorg Nucl Chem 32(7):2443–2445

    Article  CAS  Google Scholar 

  47. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  48. Gregg SJ, Sing KSW (1967) Adsorption, Surface Area and Porosity. Academic Press, London

    Google Scholar 

  49. Tomé AC, Silva AMS, Alkorta I, Elguero J (2011) Atropisomerism and conformational aspects of meso-tetraarylporphyrins and related compounds. J Porphyrins Phthalocyanines 15:1–28

    Article  Google Scholar 

  50. Dirks JW, Underwood G, Matheson JC, Gust D (1979) Conformational dynamics of. alpha.,.beta.,.gamma.,.delta.-tetraarylporphyrins and their dications. J Organomet Chem 44:2551

    Article  CAS  Google Scholar 

  51. Medforth CJ, Haddad RE, Muzzi CM, Dooley NR, Jaquinod L, Shyr DC, Nurco DJ, Olmstead MM, Smith KM, Ma JG, Shelnutt JA (2003) Unusual aryl − porphyrin rotational barriers in peripherally crowded porphyrins. Inorg Chem 42:2227–2241

    Article  CAS  PubMed  Google Scholar 

  52. Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163

    Article  CAS  Google Scholar 

  53. Gouterman M, Wagnière GH, Snyder LC (1963) Spectra of porphyrins: part II. Four orbital model. J Mol Spectrosc 11:108–127

    Article  CAS  Google Scholar 

  54. Seybold PG, Gouterman M (1969) Porphyrins XIII, fluorescence spectra and quantum yields. J Mol Spectrosc 31:1–13

    Article  CAS  Google Scholar 

  55. Goutermam M, Khalil G-E (1974) Porphyrin Free Base phosphorescence. J Mol Spectrosc 53:88–100

    Article  Google Scholar 

  56. Maiti NC, Mazumdar S, Periasamy N (1998) J- and H-aggregates of porphyrin-surfactant complexes: time-resolved fluorescence and other spectroscopic studies. J Phys Chem B 102:1528–1538

    Article  CAS  Google Scholar 

  57. Kitagawa Y, Hiromoto J, Ishii K (2013) Electronic absorption, MCD, and luminescence properties of porphyrin J-aggregates. J Porphyrins Phthalocyanines 17:703–711

    Article  CAS  Google Scholar 

  58. Lomova TN, Berezin BD (2001) Porphyrin complexes with p, d, and f metals in high oxidation states: structures, electronic absorption, and IR spectra. Russ J Coord Chem 27(2):85–104

    Article  CAS  Google Scholar 

  59. Ferreira JA, Barral R, Baptista JD, Ferreira MIC (1991) Absorption coefficients and fluorescence quantum yield of porphyrin films determined by optical and photoacustic spectroscopies. J Lumin 48–49:385–390

    Article  Google Scholar 

  60. Peri JB (1966) Infrared study of OH and NH2 groups on the surface of a dry silica aerogel. J Phys Chem 70(9):2937–2945

    Article  CAS  Google Scholar 

  61. Orgaz F, Rawson H (1986) Characterization of various stages of the sol- gel process. J Non-Cryst Solids 82:57

    Article  CAS  Google Scholar 

  62. Wood DL, Rabinovich EM (1986) Infrared studies of alkoxide gels. J Non-Cryst Solids 82:171–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Ministry of Education (SEP-PRODEP) for the support awarded to the Academic Body “Fisicoquímica de Superficies” (UAM-I CA-031), to the Academic Network “Diseño Nanoscópico y Textural de Materiales Avanzados”, SEP-PROMEP (UAM-PTC-459) and for grant number 22209 awarded to T.T.E. Authors also wish to thank the National Science and Technology Council of Mexico (CONACYT) for the financement of projects 168692 and CB-2010-01 154962.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. García-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Sánchez, M.A., Serratos, I.N., Sosa, R. et al. Fluorescence and Textural Characterization of Ortho-Amine Tetraphenylporphyrin Covalently Bonded to Organo–Modified Silica Xerogels. J Fluoresc 26, 1601–1616 (2016). https://doi.org/10.1007/s10895-016-1846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1846-8

Keywords

Navigation