Skip to main content
Log in

A New Thiosemicarbazone-Based Fluorescence “Turn-on” Sensor for Zn2+ Recognition with a Large Stokes Shift and its Application in Live Cell Imaging

  • FLUORESCENCE NEWS ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Selective fluorescence turn on Zn2+ sensor with long-wavelength emission and a large Stokes shift is highly desirable in Zn2+ sensing area. We reported herein the synthesis and Zn2+ recognition properties of a new thiosemicarbazone-based fluorescent sensor L. L displays high selectivity and sensitivity toward Zn2+ over other metal ions in DMSO-H2O (1:1, v/v, HEPES 10 mM, pH = 7.4) solution with a long-wavelength emission at 572 nm and a large Stokes shift of 222 nm. Confocal fluorescence microscopy experiments demonstrate that L is cell-permeable and capable of monitoring intracellular Zn2+.

We report a new thiosemicarbazone-based fluorescent sensor (L) for selective recognition of Zn2+ with a long wavelength emission and a large Stokes shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Rev 34:137–148

    Article  CAS  PubMed  Google Scholar 

  2. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  CAS  PubMed  Google Scholar 

  3. Haase H, Rink L (2007) Signal transduction in monocytes: the role of zinc ions. Biometals 20:579–585

    Article  CAS  PubMed  Google Scholar 

  4. Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317

    Article  CAS  PubMed  Google Scholar 

  5. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Bai Y, Han Z, He W, Guo Z (2015) Photoluminescence imaging of Zn2+ in living systems. Chem Soc Rev 44:4517–4546

    Article  CAS  PubMed  Google Scholar 

  7. Jiang P, Guo Z (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205–229

    Article  CAS  Google Scholar 

  8. Xu Z, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39:1996–2006

    Article  CAS  PubMed  Google Scholar 

  9. Easmon J, Pürstinger G, Heinisch G, Roth T, Fiebig HH, Holzer W, Jäger W, Jenny M, Hofmann J (2001) Synthesis, cytotoxicity, and antitumor activity of copper(II) and iron(II) complexes of 4 N-azabicyclo[3.2.2]nonane thiosemicarbazones derived from acyl diazines. J Med Chem 44:2164–2171

    Article  CAS  PubMed  Google Scholar 

  10. Jütten P, Schumann W, Härtl A, Dahse H-M, Gräfe U (2007) Thiosemicarbazones of formyl benzoic acids as novel potent inhibitors of estrone sulfatase. J Med Chem 50:3661–3666

    Article  PubMed  Google Scholar 

  11. Quiroga AG, Navarro Ranninger C (2004) Contribution to the SAR field of metallated and coordination complexes: studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coord Chem Rev 248:119–133

    Article  CAS  Google Scholar 

  12. Chellan P, Nasser S, Vivas L, Chibale K, Smith GS (2010) Cyclopalladated complexes containing tridentate thiosemicarbazone ligands of biological significance: synthesis, structure and antimalarial activity. J Organomet Chem 695:2225–2232

    Article  CAS  Google Scholar 

  13. Cory JG, Cory AH, Rappa G, Lorico A, Mao-Chin L, Tai-Shun L, Sartorelli AC (1994) Inhibitors of ribonucleotide reductase. Biochem Pharmacol 48:335–344

    Article  CAS  PubMed  Google Scholar 

  14. Belicchi-Ferrari M, Bisceglie F, Casoli C, Durot S, Morgenstern-Badarau I, Pelosi G, Pilotti E, Pinelli S, Tarasconi P (2005) Copper(II) and cobalt(III) Pyridoxal thiosemicarbazone complexes with Nitroprusside as Counterion: syntheses, electronic properties, and Antileukemic activity. J Med Chem 48:1671–1675

    Article  CAS  PubMed  Google Scholar 

  15. Baldini M, Belicchi-Ferrari M, Bisceglie F, Dall’Aglio PP, Pelosi G, Pinelli S, Tarasconi P (2004) Copper(II) complexes with substituted thiosemicarbazones of α-ketoglutaric acid: synthesis, X-ray structures, DNA binding studies, and nuclease and biological activity. Inorg Chem 43:7170–7179

    Article  CAS  PubMed  Google Scholar 

  16. Palanimuthu D, Shinde SV, Somasundaram K, Samuelson AG (2013) In vitro and in vivo anticancer activity of copper bis(thiosemicarbazone) complexes. J Med Chem 56:722–734

    Article  CAS  PubMed  Google Scholar 

  17. Tang L, Zhou P, Zhang Q, Huang Z, Zhao J, Cai M (2013) A simple quinoline derivatized thiosemicarbazone as a colorimetic and fluorescent sensor for relay recognition of Cu2+ and sulfide in aqueous solution. Inorg Chem Commun 36:100–104

    Article  CAS  Google Scholar 

  18. Tolpygin IE (2012) Thiosemicarbazones as effective fluorescent sensors for cations and anions. Russ J Gen Chem 82:1533–1536

    Article  CAS  Google Scholar 

  19. Zhou Y-Q, Wei T-B, Zhang Y-M (2008) Synthesis of thiosemicarbazone derivatives of benzo-15-crown-5 and their anion recognition properties. Phosphorus Sulfur Silicon Relat Elem 183:1478–1488

    Article  CAS  Google Scholar 

  20. Zhang Y-M, Wang D-D, Lin Q, Wei T-B (2007) Synthesis and anion recognition properties of thiosemicarbazone based molecular tweezers. Phosphorus Sulfur Silicon Relat Elem 183:44–55

    Article  Google Scholar 

  21. Santos-Figueroa LE, Moragues ME, Raposo MMM, Batista RMF, Costa SPG, Ferreira RCM, Sancenon F, Martinez-Manez R, Ros-Lis JV, Soto J (2012) Synthesis and evaluation of thiosemicarbazones functionalized with furyl moieties as new chemosensors for anion recognition. Org Biomol Chem 10:7418–7428

    Article  CAS  PubMed  Google Scholar 

  22. Tang L, Wang N, Guo J (2012) Colorimetric and fluorescent recognition of fluoride by a binaphthol thioureido derivative. Bull Kor Chem Soc 33:2145–2148

    Article  CAS  Google Scholar 

  23. Li Z, Xiang Y, Tong A (2008) Ratiometric chemosensor for fluorescent determination of Zn2+ in aqueous ethanol. Anal Chim Acta 619:75–80

    Article  CAS  PubMed  Google Scholar 

  24. Buncic G, Donnelly PS, Paterson BM, White JM, Zimmermann M, Xiao Z, Wedd AG (2010) A water-soluble bis(thiosemicarbazone) ligand. A sensitive probe and metal buffer for zinc. Inorg Chem 49:3071–3073

    Article  CAS  PubMed  Google Scholar 

  25. Palanimuthu D, Shinde SV, Dayal D, Somasundaram K, Samuelson AG (2013) Imaging intracellular zinc by using a glyoxal bis(4-methyl-4-phenyl-3-thiosemicarbazone) ligand. Eur J Inorg Chem 2013:3542–3549

    Article  CAS  Google Scholar 

  26. Jouad EM, Riou A, Allain M, Khan MA, Bouet GM (2001) Synthesis, structural and spectral studies of 5-methyl 2-furaldehyde thiosemicarbazone and its Co, Ni, Cu and Cd complexes. Polyhedron 20:67–74

    Article  CAS  Google Scholar 

  27. Zhang H, Thomas R, Oupicky D, Peng F (2008) Synthesis and characterization of new copper thiosemicarbazone complexes with an ONNS quadridentate system: cell growth inhibition, S-phase cell cycle arrest and proapoptotic activities on cisplatin-resistant neuroblastoma cells. J Biol Inorg Chem 13:47–55

    Article  CAS  PubMed  Google Scholar 

  28. Ye F, Zheng ZJ, Deng WH, Zheng LS, Deng Y, Xia CG, Xu LW (2013) Modulation of multifunctional N, O, P ligands for enantioselective copper-catalyzed conjugate addition of diethylzinc and trapping of the zinc enolate. Chem Asian J 8:2242–2253

    Article  CAS  PubMed  Google Scholar 

  29. Huang H, Chen Q, Ku X, Meng L, Lin L, Wang X, Zhu C, Wang Y, Chen Z, Li M (2010) A series of α-heterocyclic carboxaldehyde thiosemicarbazones inhibit topoisomerase IIα catalytic activity. J Med Chem 53:3048–3064

    Article  CAS  PubMed  Google Scholar 

  30. Wu J, Liu W, Ge J, Zhang H, Wang P (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495

    Article  CAS  PubMed  Google Scholar 

  31. Ding W-H, Cao W, Zheng X-J, Fang D-C, Wong W-T, Jin L-P (2013) A highly selective fluorescent chemosensor for AlIII ion and fluorescent species formed in the solution. Inorg Chem 52:7320–7322

    Article  CAS  PubMed  Google Scholar 

  32. Wang XM, Yan H, Feng XL, Chen Y (2010) 1-Pyrenecarboxaldehyde thiosemicarbazone: a novel fluorescent molecular sensor towards mercury (II) ion. Chin Chem Lett 21:1124–1128

    Article  CAS  Google Scholar 

  33. Udhayakumari D, Suganya S, Velmathi S (2013) Thiosemicabazone based fluorescent chemosensor for transition metal ions in aqueous medium. J Lumin 141:48–52

    Article  CAS  Google Scholar 

  34. Suganya S, Zo HJ, Park JS, Velmathi S (2014) Simultaneous sensing of aqueous anions and toxic metal ions by simple dithiosemicarbazones and bioimaging of living cells. Ind Eng Chem Res 53:9561–9569

    Article  CAS  Google Scholar 

  35. Tang L, Cai M, Zhou P, Zhao J, Zhong K, Hou S, Bian Y (2013) A highly selective and ratiometric fluorescent sensor for relay recognition of zinc (II) and sulfide ions based on modulation of excited-state intramolecular proton transfer. RSC Adv 3:16802–16809

    Article  CAS  Google Scholar 

  36. Zhong K, Zhou X, Hou R, Zhou P, Hou S, Bian Y, Zhang G, Tang L, Shang X (2014) A water-soluble highly sensitive and selective fluorescent sensor for Hg2+ based on 2-(2-(8-hydroxyquinolin)-yl) benzimidazole via ligand-to-metal charge transfer (LMCT). RSC Adv 4:16612–16617

    Article  CAS  Google Scholar 

  37. Du J, Fan J, Peng X, Li H, Sun S (2010) The quinoline derivative of ratiometric and sensitive fluorescent zinc probe based on deprotonation. Sensors Actuators B Chem 144:337–341

    Article  CAS  Google Scholar 

  38. Dong Z, Le X, Zhou P, Dong C, Ma J (2014) An “off–on–off” fluorescent probe for the sequential detection of Zn2+ and hydrogen sulfide in aqueous solution. New J Chem 38:1802–1808

    Article  CAS  Google Scholar 

  39. Shortreed M, Kopelman R, Kuhn M, Hoyland B (1996) Fluorescent fiber-optic calcium sensor for physiological measurements. Anal Chem 68:1414–1418

    Article  CAS  PubMed  Google Scholar 

  40. Yıldız M, Ünver H, Erdener D, Kiraz A, İskeleli NO (2009) Synthesis, spectroscopic studies and crystal structure of (E)-2-(2,4-dihydroxybenzylidene) thiosemicarbazone and (E)-2-[(1H-indol-3-yl) methylene] thiosemicarbazone. J Mol Struct 919:227–234

    Article  Google Scholar 

  41. El-Shekheby HA, Mangood AH, Hamza SM, Al-Kady AS, Ebeid EZM (2014) A highly efficient and selective turn-on fluorescent sensor for Hg2+, Ag+ and Ag nanoparticles based on a coumarin dithioate derivative. Luminescence 29:158–167

    Article  CAS  PubMed  Google Scholar 

  42. Petering H, Buskirk H, Underwood G (1964) The anti-tumor activity of 2-keto-3-ethoxybutyraldehyde bis (thiosemicarbazone) and related compounds. Cancer Res 24:367–372

    CAS  PubMed  Google Scholar 

  43. Liu M-C, Lin T-S, Penketh P, Sartorelli AC (1995) Synthesis and antitumor activity of 4-and 5-substituted derivatives of isoquinoline-1-carboxaldehyde thiosemicarbazone. J Med Chem 38:4234–4243

    Article  CAS  PubMed  Google Scholar 

  44. Finch RA, Liu M-C, Grill SP, Rose WC, Loomis R, Vasquez KM, Cheng Y-C, Sartorelli AC (2000) Triapine (3-aminopyridine-2-carboxaldehyde-thiosemicarbazone): a potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem Pharmacol 59:983–991

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by National Natural Science Foundation of China (Grant Nos. 21176029, 21476029), Liaoning BaiQianWan Talents Program (No. 2012921057), and the Program for Liaoning Excellent Talents in University (No. LR2015001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Huang, Z., Zheng, Z. et al. A New Thiosemicarbazone-Based Fluorescence “Turn-on” Sensor for Zn2+ Recognition with a Large Stokes Shift and its Application in Live Cell Imaging. J Fluoresc 26, 1535–1540 (2016). https://doi.org/10.1007/s10895-016-1827-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1827-y

Keywords

Navigation