Electrooptical Absorption Measurements (EOAM) Testify Existence of two Conformers of Prodan and Laurdan with Different Dipole Moments in Equilibrium Ground and Franck-Condon Excited State


The results from the electrooptical absorption measurements (EOAM) on the equilibrium ground and excited Franck-Condon state dipole moments of Prodan and Laurdan in 1,4-dioxane are presented. As follows from experiments Prodan and Laurdan in the equilibrium ground and excited Franck-Condon state have two conformers with considerably different dipole moments. The electrical dipole moments and the transition dipole moment, obtained from the short-wavelength region of the absorption spectrum are parallel. The electrical dipole moments measured at the long-wavelength spectral region are parallel to each other but not parallel to the transition dipole moment m a. The angle θ between the transition dipole moment m a and the dipole moment in the equilibrium ground state μ g of the long-wavelength conformer is about 300 for both probes. Obtained results evidence that donor-acceptor pairs of the short-wavelength and long-wavelength conformers are not located on the same axis. Two low-energy conformers of Prodan have been found by density functional theory (DFT) calculations, differing in the orientation of the carbonyl group towards the naphthalene system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8







Electrooptical absorption measurements


Density functional theory


  1. 1.

    Moss GP (1996) Basic terminology of stereochemistry. Pure Appl Chem 68:2193–2222

    CAS  Article  Google Scholar 

  2. 2.

    Freidzon AY, Bagaturґyants AA, Gromov SP, Alfimov MV (2003) Recoordination of a metal ion in the cavity of a crown compound: a theoretical study 1. Conformers of arylazacrown ethers and their complexes with Ca2+ cation. Rus Cheml Bull, International Edition 52: 2646—2655

  3. 3.

    Baryshnikov GV, Minaev BF, Minaeva VA, Еgren H (2010) Theoretical study of the conformational structure and thermodynamic properties of 5-(oxo-1,3,thiazolidine 2- ylidene)-rhodanine-3-acetic acid as acceptor groups of indoline dyes. J Struct Chem 51:817–823

    CAS  Article  Google Scholar 

  4. 4.

    Al-Basheer W (2011) Solvent effects on IR modes of (R)-3-methylcyclopentanone conformers: a computational investigation. J Solut Chem 41:1495–1506. doi:10.1007/s10953-012-9890-8

    Article  Google Scholar 

  5. 5.

    Cruz-Cabeza AJ, Bernstein J (2014) Conformational polymorphism. Chem Rev 114:2170–2191

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Upadhyayula S, Nunez V, Espinoza EM, Larsen JM, Bao D, Shi D, Mac JT, Anvaria B, Vullev VI (2015) Photoinduced dynamics of a cyanine dye: parallel pathways of non-radiative deactivation involving multiple excited-state twisted transients. Chem Sci 6:2237–2251

    CAS  Article  Google Scholar 

  7. 7.

    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Second edition. Kluwer Academic/Plenum Publishers

  8. 8.

    Parasassi T, Ravagnan G, Rusch RM, Gratton E (1993) Modulation and dynamics of phase properties in phospholipid mixtores detected by Laurdan fluorescence. Photochem Photobiol 57:403–410

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zeng J, Chong PL (1995) Effect of ethanol-induced lipid interdigitation on the membrane solubility of Prodan, Acdan, and Laurdan. Biophys J 68:567–573. doi:10.1016/S0006-3495(95)80218-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Pande AH, Qin S, Tatulian SA (2000) Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biochem Biophys 88:4084–4094

    Google Scholar 

  11. 11.

    Viard M, Gallay J, Vincent M, Paternostre M (2001) Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study. Biophys J 80:347–359

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Lissi EA, Abuin EB, Rubio MA, Ceron A (2000) Fluorescence of Prodan and laurdan in AOT/heptane/water microemulsions: partitioning of the probes and characterization of microenvironments. Langmuir 16:178–181

    CAS  Article  Google Scholar 

  13. 13.

    Kozyra KA, Heldt JR, Gondek G, Kwiek P, Heldt J (2004) Influence of DPPC liposome concentration on the fluorescence properties of Prodan and Laurdan. Z Naturforsch 59:809–818

    CAS  Google Scholar 

  14. 14.

    De Vequi-Suplicy CC, Benatti CR, Lamy MT (2006) Laurdan in fluid bilayers: position and structural sensitivity. J Fluoresc 16(3):431–439

    CAS  Article  Google Scholar 

  15. 15.

    Marsh D (2009) Reaction fields in the environment of fluorescent probes: polarity profiles in membranes. Biophys J 96(7):2549–2558

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lucio AD, Vequi-Suplicy CC, Fernandez RM, Lamy MTD (2010) Laurdan spectrum decomposition as a tool for the analysis of surface bilayer structure and polarity: a study with DMPG, peptides and cholesterol. J Fluoresc 20:473–482

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ottavia J (2013) Lifetime and spectral phasors: exploiting Laurdan's fluorescence to characterize cell membranes. Dissertation, University of California

  18. 18.

    Rollinson AM, Drickamer HG (1980) High pressure study of luminescence from intramolecular CT compounds. J Chem Phys 73:5981–5996

    CAS  Article  Google Scholar 

  19. 19.

    Heisel F, Miehb JA, Szemik AW (1987) Experimental evidence of an intramolecular reaction in excited Prodan solution. Chem Phys Lett 138:321–326

    CAS  Article  Google Scholar 

  20. 20.

    Viard M, Gallay J, VincentmM MO, Robert B, Paternostre M (1997) Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction. Biophys J 73:2221–2234

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Parusel A (1998) Semiempirical studies of solvent effects on the intramolecular charge transfer of the fluorescence probe PRODAN. J Chem Soc Faraday Trans 94:2923–2927

    CAS  Article  Google Scholar 

  22. 22.

    Kozyra KA, Heldt JR, Heldt J, Engelke M, Diehl HA (2003) Concentration and temperature dependence of Laurdan fluorescence in glycerol. Z Naturforsch A 58:581–588

    CAS  Article  Google Scholar 

  23. 23.

    Tomin VI, Brozis M, Heldt J (2003) The red-edge effects in Laurdan solutions. Z Naturforsch 58A:109–117

    Google Scholar 

  24. 24.

    Tomin VI, Hubisz K (2006) Inhomogeneous spectral broadening and the decay kinetics of the luminescence spectra of Prodan. Opt Spectrosc 101:98–104

    CAS  Article  Google Scholar 

  25. 25.

    Novaira M, Moyano F, BiasuttiMA SJJ, Correa NM (2008) An example of how to use AOT reverse micelle interfaces to control a photoinduced intramolecular charge-transfer process. Langmuir 24:4637–4646

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Adhikary R, Barnes CA, Petrich JW (2009) Solvation dynamics of the fluorescent probe PRODAN in heterogeneous environments: contributions from the locally excited and charge-transferred states. J Phys Chem B 113:11999–12004

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Everett RK, Nguyen AA, Abelt CJ (2010) Does PRODAN possess an O-TICTexcited state? Synthesis and properties of two constrained derivatives. J Phys Chem A 114(14):4946–4950

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Pederzoli M, Sobek L, Brabec J, Kowalski K, Cwiklik L, Pittner J (2014) Fluorescence of PRODAN in water: a computational QM/MM MD study. Chem Phys Lett 597:57–62

    CAS  Article  Google Scholar 

  29. 29.

    Catalan J, Perez P, Laynez J, Blanco FG (1991) Analysis of the solvent effect on the photophysics properties of 6-propionyl-2-(dimethylamino)naphthalene (PRODAN). J Fluoresc 1:215–223

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Samanta A, Fassenden RW (2000) Excited state dipole moment of PRODAN as determined from transient dielectric loss measurements. J Phys Chem A 104:8972–8975

    CAS  Article  Google Scholar 

  31. 31.

    Lobo BC, Abelt CJ (2003) Does PRODAN possess a planar or twisted charge-transfer excited state? Photophysical properties of two PRODAN derivatives. J Phys Chem A 107:10938–10943

    CAS  Article  Google Scholar 

  32. 32.

    Mennucci B, Caricato M, Ingrosso F, Cappelli C, Cammi R, Tomasi J, Scalmani G, Frisch MJ (2008) How the environment controls absorption and fluorescence spectra of PRODAN: a quantum mechanical study in homogeneous and heterogeneous media. J Phys Chem B 112(2):414–423

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Vequi-Suplicy CC, Coutinho K, Lamy MT (2015) New insights on the fluorescent emission spectra of Prodan and Laurdan. J Fluoresc 25:621–629

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent-probe-6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18(14):3075–3078

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Balter A, Novak W, Pawelkiewicz W, Kowalczuk W (1988) Some remarks on the interpretation of the spectral properties of Prodan. Chem Phys Lett 143:565–570

    CAS  Article  Google Scholar 

  36. 36.

    Bunker CE, Bowen TL, Sun YP (1993) A photophysical study of solvatochromic probe 6-propionyl-2-(N,N-Dimethylamino)Naphthalene (Prodan) in solution. Photochem Photobiol 58(4):499–505

    CAS  Article  Google Scholar 

  37. 37.

    Kawski A (1999) Ground- and excited-state dipole moments of 6-propionyl-2-(N,N-Dimethylamino)naphthalene determined from solvatochromic shifts. Z Naturforsch 54a:379–381

    Google Scholar 

  38. 38.

    Kawski A, Kuklinski B, Bojarski P (2000) Thermochromic shifts of absorption and fluorescence spectra and excited state dipole moment of PRODAN. Z Naturforsch 55a:550–554

    Google Scholar 

  39. 39.

    Kawski A, Kuklinski B, Bojarski P, Diehl (2000) Ground and excited state dipole moments of LAURDAN determined from solvatochromic and thermochromic shifts of absorption and fluorescence spectra. Z Naturforsch 55a:817–822

    Google Scholar 

  40. 40.

    Bacalum M, Zorila B, Radu M, Popescu A (2013) Laurdan solvatochromism: influence of solvent polarity and hydrogen bonds. Optoelectronics and Advanced Materials – Rapid Communications 7:456–460

    CAS  Google Scholar 

  41. 41.

    Vequi-Suplicy CC, Coutinho K, Lamy MT (2014) Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations. Biophys Rev 6:63–74

    Article  Google Scholar 

  42. 42.

    Nemkovich NA, Baumann W (2007) Molecular stark-effect spectroscopy of Prodan and Laurdan in different solvents and electric dipole moments in their equilibrated ground and Franck–Condon excited state. J Photochem Photobiol A Chem 185:26–31

    CAS  Article  Google Scholar 

  43. 43.

    Peteanu L, Locknar S (1997) Electrooptical absorption measurements and ab initio calculations of the dipolar properties of 2-(2′-hydroxyphenyl)-benzothiazole and -benzoxazole: two photostabilizers that undergo excited-state proton. Chem Phys Lett 296:521–529

    Google Scholar 

  44. 44.

    Premvardhan LL, Peteanu LA (1999) Dipolar properties of and temperature effects on the electronic states of 3-hydroxyflavone (3HF) determined using stark-effect spectroscopy and compared to electronic structure calculations. J Phys Chem A 103:7506–7514

    CAS  Article  Google Scholar 

  45. 45.

    Nemkovich NA, Baumann W, Reis H, Detzer N (1995) Dipole moments of aminophtalimides determined by modified electro-optical absorption and emission measurements. J Photochem Photobiol A Chem 89:127–133

    CAS  Article  Google Scholar 

  46. 46.

    Nemkovich NA, Baumann W, Reis H (1997) Electro-optical and laser spectrofluorimetry study of coumarins 7 and 30: evidence for the existence of the close-lying electronic states and conformers. J Photochem Photobiol A Chem 109:287–292

    CAS  Article  Google Scholar 

  47. 47.

    Nemkovich NA, Baumann W, Kruchenok JV, Reis H, Rubinov AN (1997) Dipole moments of phenylnaphthylamine fluorescence probes and study of dielectric interactions in human erythrocyte ghosts. J Fluoresc 7:363–370

    CAS  Article  Google Scholar 

  48. 48.

    Nemkovich NA, Kruchenok JV, Rubinov AN, Pivovarenko VG, Baumann W (2001) Site selectivity in excited-state intramolecular proton transfer in flavonols. J Photochem Photobiol A Chem 139:53–62

    CAS  Article  Google Scholar 

  49. 49.

    Nemkovich NA, Baumann W, Pivovarenko VG (2002) Dipole moments of 4_-aminoflavonols using electro-optical absorption measurements or molecular stark-effect spectroscopy. J Photochem Photobiol A Chem 153:19–24

    CAS  Article  Google Scholar 

  50. 50.

    Nemkovich NA, Pivovarenko VG, Sobchuk AN, Baumann W, Rubinov AN (2006) Ultrafast time-resolved fluorescence spectroscopy of novel ketocyanine dyes. Opt Spectrosc 100:608–614

    Article  Google Scholar 

  51. 51.

    Nemkovich NA, Kruchenok JV, Sobchuk AN, Detert WN, Chernyavskii EA (2009) Subnanosecond spectrofluorimetry of new indolocarbazole derivatives in solutions and protein complexes and their dipole moments. Opt Spectrosc 107:292–299

    Article  Google Scholar 

  52. 52.

    Nemkovich NA, Detert H, Schmitt V (2010) Localized excitation effect on dipole moments of oligophenylenevinylenes in their excited Franck–Condon state. Chem Phys 378:37–41

    CAS  Article  Google Scholar 

  53. 53.

    Nemkovich NA, Detert H, Sobchuk AN (2012) Localized excitation effect in [(E,E)-2,5-bis-(4-N,N-dipropylaminophenyl)ethylenyl]-3,6-dimethylpyrazine and generation of its different forms in solutions. J Appl Spectrosc 78:787–793

    CAS  Article  Google Scholar 

  54. 54.

    Nemkovich NA, Detert H, Schmitt V, Kruchenok JV (2012) Influence of local excitation of octupolar oligophenylenvinylenes on their dipole moments. J Appl Spectrosc 79:353–359

    CAS  Article  Google Scholar 

  55. 55.

    Nemkovich NA, Baumann W, Kruchenok JV, Kurilo GI, Pivovarenko VG, Rubinov AN (2011) Molecular stark effect spectroscopy of diflavonols and inhomogeneous broadening of its electronic spectra in erythrocyte membranes. Opt Spectrosc 110:541–549

    CAS  Article  Google Scholar 

  56. 56.

    Liptay W (1974) Dipole moments and polarizabilities of molecules in excited electronic states. In: Lim ES (ed) Excited states, vol V.1. Academic Press, New York, pp. 129–205

    Google Scholar 

  57. 57.

    Baumann W (1989) Determination of dipole moments in ground and excited state. In: Rossiter BW, Hamilton JF (eds) Physical methods of chemistry, vol V.3b. Wiley, New York, pp. 45–131

    Google Scholar 

  58. 58.

    Rettig W, Baumann W (1992) In: Ralek JF (ed) Progress in photochemistry and photophysics, vol 6. CRC Press, Boca Raton, pp. 79–134

    Google Scholar 

  59. 59.

    Neese F (2012) The ORCA program system. WIREs Comput Mol Sci 2:73–78

    CAS  Article  Google Scholar 

  60. 60.

    Neese F, Wennmohs F, Hansen A, Becker U (2009) Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem Phys 356:98–109

    CAS  Article  Google Scholar 

  61. 61.

    Izsák R, Neese F (2011) An overlap fitted chain of spheres exchange method. J Chem Phys 135:144105

    Article  PubMed  Google Scholar 

  62. 62.

    Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  63. 63.

    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  64. 64.

    Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  Google Scholar 

  65. 65.

    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Brozis M, Tomin VI, Heldt J (2002) Electron energies, dipole moments, and distribution of the Laurdan molecules over the conformational states of methyl groups. J Appl Spectrosc 69:678–682

    Google Scholar 

  67. 67.

    Sobolewski AL, Domcke W (1996) Charge transfer in aminobenzonitriles: do they twist? Chem Phys Lett 250:428–436

    CAS  Article  Google Scholar 

  68. 68.

    Sobolewski AL, Domcke W (1996) Promotion of intramolecular charge transfer in dimethylamino derivatives: twisting versus acceptor-group rehybridization. Chem Phys Lett 259:119–127

    CAS  Article  Google Scholar 

  69. 69.

    Zachariasse KA (2000) Comment on “Pseudo-Jahn–Teller and TICT-models: a photophysical comparison of meta-and para-DMABN derivatives” [Chem. Phys. Lett. 305 1999 8] The PICT model for dual fluorescence of aminobenzonitriles. Chem Phys Lett 320:8–13

    CAS  Article  Google Scholar 

  70. 70.

    Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031

    Article  PubMed  Google Scholar 

  71. 71.

    Georgieva I, Aquino AJA, Plasser F, Trendafilova N, Kohn A, Lischka H (2015) Intramolecular charge-transfer excited-state processes in 4-(N,N-dimethylamino)benzonitrile: The role of twisting and the πσ* state. J Phys Chem A 119:6232–6243

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Lewis FD, Holman B (1980) Singlet states of benzonitrile and p-dimethylaminobenzonitrile. J Phys Chem 84:2326–2328

    CAS  Article  Google Scholar 

Download references


N.N.A. thanks German Academic Exchange Service (DAAD) for the scholarship.

Author information



Corresponding authors

Correspondence to N. A. Nemkovich or H. Detert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nemkovich, N.A., Detert, H. & Roeder, N. Electrooptical Absorption Measurements (EOAM) Testify Existence of two Conformers of Prodan and Laurdan with Different Dipole Moments in Equilibrium Ground and Franck-Condon Excited State. J Fluoresc 26, 1563–1572 (2016). https://doi.org/10.1007/s10895-016-1809-0

Download citation


  • Prodan
  • Laurdan
  • Dipole moments
  • Electrooptical absorption measurements (EOAM)
  • Molecular Stark-effect spectroscopy
  • Conformers