Skip to main content
Log in

Spectroscopic, Viscositic, DNA Binding and Cytotoxic Studies of Newly Synthesized Steroidal Imidazolidines

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A series of new steroidal imidazolidine derivatives (46) were synthesized after reacting steroidal thiosemicarbazones with chloro ethylacetate in absolute ethanol. After characterization by spectral and analytical data, the interaction studies of compounds (46) with DNA were carried out by UV–vis, fluorescence spectroscopy, hydrodynamic measurements, molecular docking and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.63 × 103 M−1, 1.81 × 103 M−1 and 2.06 × 103 M−1, respectively indicating the higher binding affinity of compound 4 towards DNA. Gel electrophoresis demonstrated that compound 4 showed strong interaction during the concentration dependent cleavage activity with pBR322 DNA. The molecular docking study suggested the intercalation of imidazolidine moiety of steroid derivative in minor groove of DNA. During in vitro cytotoxicity, compounds (46) revealed potential toxicity against the different human cancer cells (MTT assay). The uptake of compound 4 by MCF-7 and HeLa cells was studied by confocal microscopy which determined cell shrinkage and hence leading to the apoptosis. The results revealed that compound 4 has better prospectus to act as cancer chemotherapeutic candidate which warrants further in vivo anticancer investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dias RS, Lindman B (2008) DNA interactions with polymers and surfactants. Wiley, New Jersey, p 2

    Book  Google Scholar 

  2. Girod JC, Johson WCJ, Huntington SK, Maestre MF (1983) Conformation of deoxyribonucleic acid in alcohol solutions. Biochemistry 12:5092–5096

    Article  Google Scholar 

  3. Meng X, Liu L, Zhou C, Wang L, Liu C (2008) Dinuclear copper(II) complexes of a Polybenzimidazole ligand: their structures and inductive roles in DNA condensation. Inorg Chem 47:6572–6574

    Article  CAS  PubMed  Google Scholar 

  4. Wilson RW, Bloomfield VA (1979) Counterion-induced condesation of deoxyribonucleic acid. A light-scattering study. Biochemistry 18:2192–2196

    Article  CAS  PubMed  Google Scholar 

  5. Cohen P, Kidson C (1968) Conformational analysis of DNA-poly-l-lysine complexes by optical rotatory dispersion. J Mol Biol 35:241–245

    Article  CAS  PubMed  Google Scholar 

  6. Adler AJ, Moran EC, Fasman GD (1975) Complexes of DNA with histones f2a2 and f3. Biochemistry 14:4179–4185

    Article  CAS  PubMed  Google Scholar 

  7. Gosule LC, Schellamn JA (1976) Compact form of DNA induced by spermidine. Nature 259:333–335

    Article  CAS  PubMed  Google Scholar 

  8. Zinchenko AA, Sakaue T, Aaraki S, Yoshikawa K, Baigl D (2007) Single-chain compaction of long duplex DNA by cationic nanoparticles: modes of interaction and comparison with chromatin. J Phys Chem B 111:3019–3031

    Article  CAS  PubMed  Google Scholar 

  9. Estévez-Torres A, Baigl D (2011) DNA compaction: fundamentals and applications. Soft Matter 7:6746–6756

    Article  Google Scholar 

  10. Burger RM (1998) Cleavage of nucleic acids by bleomycin. Chem Rev 98:1153–1169

    Article  CAS  PubMed  Google Scholar 

  11. Sigman DS, Mazumder A, Perrin DM (1993) Chemical nucleases. Chem Rev 93:2295–2316

    Article  CAS  Google Scholar 

  12. Jin Y, Cowan JA (2005) DNA cleavage by copper-ATCUN complexes. Factors influencing cleavage mechanism and linearization of dsDNA. J Am Chem Soc 127:8408–8415

    Article  CAS  PubMed  Google Scholar 

  13. Smith J, Ariga K, Anslyn EV (1993) Enhanced imidazole-catalyzed RNA cleavage induced by a bis-alkyl guanidinium receptor. J Am Chem Soc 115:362–364

    Article  CAS  Google Scholar 

  14. Scheffer U, Strick A, Ludwig V, Peter S, Kalden E, Gobel MW (2005) Metal-free catalysts for the hydrolysis of RNA derived from guanidines, 2-aminopyridines, and 2-aminobenzimidazoles. J Am Chem Soc 127:2211–2217

    Article  CAS  PubMed  Google Scholar 

  15. Carlson CB, Beal PA (2000) Solid-phase synthesis of acridinebased threading intercalator peptides. Bioorg Med Chem Lett 10:1979–1982

    Article  CAS  PubMed  Google Scholar 

  16. Kapuriya N, Kapuriya K, Zhang X, Chou T-C, Kakadiya R, Wu YT, Tsai T-H, Chen Y-T, Lee T-C, Shah A, Naliapara Y, Su T-L (2008) Synthesis and biological activity of stable and potent antitumor agents, aniline nitrogen mustards linked to 9-anilino acridines via a urea linkage. Bioorg Med Chem 16:5413–5423

    Article  CAS  PubMed  Google Scholar 

  17. Bacherikov VA, Chang J-Y, Lin Y-W, Chen C-H, Pan W-Y, Dong H, Lee R-Z, Chou T-C, Su T-L (2005) Synthesis and antitumor activity of 5-(9-acridinylamino) anisidine derivatives. Bioorg Med Chem 23:6513–6520

    Article  Google Scholar 

  18. Blasiak J, Gloc E, Drzewoski J, Wozniak K, Zadrozny M, Skorski T, Pertynski T (2003) Free radical scavangers can differentially modulate the genotoxicity of amasacrinein normal and cancer cells. Mutat Res 535:25–34

    Article  CAS  PubMed  Google Scholar 

  19. Janovec L, Kozurkova M, Sabolova D, Ungvarsky J, Paulikova H, Plsikova J, Vantosa Z, Imrich J (2011) Cytotoxic 3, 6-bis((imidazolidionone)imino)acridines: synthesis, DNA binding and molecular modelling. Bioorg Med Chem 19:1790–1801

    Article  CAS  PubMed  Google Scholar 

  20. Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8:82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dar AM, Ishrat U, Yaseen Z, Gatoo MA, Shamsuzzaman (2015) In vitro cytotoxcity and interaction of new steroidal oxadiazinanones with calf thymus DNA using molecular docking, gel electrophoresis and spectroscopic techniques. J Photochem Photobiol B Biol 148:340–350

    Article  CAS  Google Scholar 

  22. Son GS (1998) Binding mode of norfloxacin to calf thymus DNA. J Am Chem Soc 120:6451–6457

    Article  CAS  Google Scholar 

  23. Salim A, Shamsuzzaman, Aslam M, Naqvi F (1997) Synthesis of spiro-1′,2′,4′-triazolidine- 3′-thiones. Synth Commun 27:2171–2175

    Article  Google Scholar 

  24. Reicmann ME, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of deoxy pentose nucleic acid. J Am Chem Soc 76:3047–3053

    Article  Google Scholar 

  25. Vijayalakshmi R, Kanthimathi M, Subramanian V, Nair BU (2000) Interaction of DNA with [Cr(Schiff base)(H2O)2]ClO4. Biochim Biophys Acta 1475:157–162

    Article  CAS  PubMed  Google Scholar 

  26. Dar AM, Shamsuzzaman, Khan Y, Sohail A (2013) Synthesis and biological studies of steroidal pyran based derivatives. J Photochem Photobiol B Biol 129:36–47

    Article  Google Scholar 

  27. Mustard D, Ritchie DW (2005) Docking essential dynamics eigen structures. Proteins: Struct Funct Bioinf 60:269–274

    Article  CAS  Google Scholar 

  28. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  29. Saxena HO, Faridi U, Kumar JK, Luqman S, DarokarMP SK, Chanotiya CS, Gupta MM, Negi AS (2007) Synthesis of chalcone derivatives on steroidal framework and their anticancer activities. Steroids 72:892–900

    Article  CAS  PubMed  Google Scholar 

  30. Shahabadi N, Kashanian S, Khosravi M, Mahdavi M (2010) Multispectroscopic DNA interaction studies of a water-soluble nickel(II) complex containing different dinitrogen aromatic ligands. Transit Met Chem 35:699–705

    Article  CAS  Google Scholar 

  31. Berk AJ (2000) TBP-like factors come into focous. Cell 103:5–8

    Article  CAS  PubMed  Google Scholar 

  32. Wolfe A, Shimer GH, Meehan T, Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396

    Article  CAS  PubMed  Google Scholar 

  33. Tan LF, Chao H, Zhen KC, Fei JJ, Wang F, Zhou YF, Ji LN (2007) Effects of the ancillary ligands of polypyridyl ruthenium(II) complexes on ther DNA binding and photocleavage behaviours. Polyhedron 26:5458–5468

    Article  CAS  Google Scholar 

  34. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  35. Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18–30

    Article  CAS  PubMed  Google Scholar 

  36. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither DELTA.-nor. LAMBDA.- tris (phenenthroline) ruthenium (II) binds to DNA by classical intercalation. Biochemistry 31:9319–9324

    Article  CAS  PubMed  Google Scholar 

  37. Trotta E, Del G, Erba N, Paci M (2000) The ATT strand of ATT. ATT trinucleotide repeats adopts stable hairpin structures induced by minor groove binding ligands. Biochemistry 39:6799–6808

    Article  CAS  PubMed  Google Scholar 

  38. Wittung P, Nielsen P, Norden B (1996) Direct observation of strand invasion by peptide nucleic acid (PNA) into double stranded DNA. J Am Chem Soc 118:7049–7054

    Article  CAS  Google Scholar 

  39. Bailly C, Chessari G, Carrasco C, Joubert A, Mann J, Wilson WD, Niedle S (2003) Sequence specific minor groove binding by bis-benzimidazoles: water molecules in ligand recognition. Nucleic Acids Res 31:1514–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith CEB, Searle MS (1999) Sequence dependent variation in DNA minor groove width dictates orientational preference of hoechst 33,258 in a-tract recognition: solution NMR structure of the 2:1 complex with d(CTTTTGCAAAAG)2. Nucleic Acids Res 27:1619–1624

    Article  Google Scholar 

  41. Haq I, Ladbury J (2000) Drug-DNA recognition: energetic and implications for design. J Mol Recogn 13:188–197

    Article  CAS  Google Scholar 

  42. Proudfoot EM, Mackay JP, Karuso P (2001) Probing site specificity of DNA binding metallo intercalators by NMR spectroscopy and molecular modeling. Biochemistry 40:4867–4878

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Department of Chemistry and Biotechnology AMU Aligarh, for providing research facilities and biological results. Author (AMD) thank specially Prof. Shamsuzzaman for useful discussions and for successful completion of this work. Author (AMD) also thanks University Grants Commission India for successful completion of work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayaz Mahmood Dar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, A.M., Shamsuzzaman & Khan, S. Spectroscopic, Viscositic, DNA Binding and Cytotoxic Studies of Newly Synthesized Steroidal Imidazolidines. J Fluoresc 26, 639–649 (2016). https://doi.org/10.1007/s10895-015-1750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1750-7

Keywords

Navigation