Skip to main content
Log in

NLOphoric Red Emitting Bis Coumarins with O-BF2-O core - Synthesis, Photophysical Properties and DFT Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The red emitting dyes were synthesized by employing coumarin core as a donor and boron-bonded coumarin as an acceptor. 7-(N,N-Diethylamino)-coumarin 3-aldehyde was reacted with 3-acetyl-4-hydroxy-coumarin, 7-(N,N-diethylamino)-3-acetyl-4-hydroxy-coumarin and 3-acetyl-4-hydroxy-1-methyl-quinolone to form the corresponding chalcones. The synthesized chalcones were though red shifted as compared to the parent coumarin, and were not emitting in red region. The BF2-complexation was used as a tool to introduce a red shift in the molecules. The BF2-complexes synthesized were found to be red emitting and show higher one photon absorption cross section. The solvatochromism shown by these dyes was studied in the light of solvent polarity parameters. DFT calculations were used to understand the photophysical properties of the synthesized dyes. NLO properties of the dyes were estimated by solvatochromic and computational methods. All the molecules synthesized were characterised with the HRMS and NMR spectral Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu X, Cole JM, Waddell PG et al (2012) Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. J Phys Chem A 116:727–737. doi:10.1021/jp209925y

    Article  CAS  PubMed  Google Scholar 

  2. Mir FA (2015) Optical and Schottky diode performance of Au/4-hydroxy Coumarin/ITO heterojunction. Opt - Int J Light Electron Opt 126:24–27. doi:10.1016/j.ijleo.2014.07.146

    Article  CAS  Google Scholar 

  3. Kumar S, Singh P, Srivastava R et al (2014) Engineering fused coumarin dyes: a molecular level understanding of aggregation quenching and tuning electroluminescence via alkyl chain substitution. J Mater Chem C 2:6637. doi:10.1039/C4TC00807C

    Article  CAS  Google Scholar 

  4. Huang L, Chen Y, Liang B et al (2014) A furanyl acryl conjugated coumarin as an efficient inhibitor and a highly selective off–on fluorescent probe for covalent labelling of thioredoxin reductase. Chem Commun 50:6987. doi:10.1039/c4cc02119c

    Article  CAS  Google Scholar 

  5. Signore G, Nifosì R, Albertazzi L et al (2010) Polarity-sensitive coumarins tailored to live cell imaging. J Am Chem Soc 132:1276–1288. doi:10.1021/ja9050444

    Article  CAS  PubMed  Google Scholar 

  6. Cigáň M, Donovalová J, Szöcs V et al (2013) 7-(Dimethylamino)coumarin-3-carbaldehyde and its phenylsemicarbazone: TICT excited state modulation, fluorescent H-aggregates, and preferential solvation. J Phys Chem A 117:4870–4883. doi:10.1021/jp402627a

    PubMed  Google Scholar 

  7. Keskin SS, Aslan N, Bayrakçeken F (2009) Optical properties and chemical behavior of Laser-dye Coumarin-500 and the influence of atmospheric corona discharges. Spectrochim Acta A Mol Biomol Spectrosc 72:254–259. doi:10.1016/j.saa.2008.09.024

    Article  PubMed  Google Scholar 

  8. Chen J, Liu W, Ma J et al (2012) Synthesis and properties of fluorescence dyes: tetracyclic pyrazolo[3,4-b]pyridine-based coumarin chromophores with intramolecular charge transfer character. J Org Chem 77:3475–3482. doi:10.1021/jo3002722

    Article  CAS  PubMed  Google Scholar 

  9. Krzeszewski M, Vakuliuk O, Gryko DT (2013) Color-tunable fluorescent dyes based on benzo[c]coumarin. Eur J Org Chem 5631–5644. doi: 10.1002/ejoc.201300374

  10. Hong G, Lee JC, Robinson JT et al (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1846. doi:10.1038/nm.2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Behnke T, Mathejczyk JE, Brehm R et al (2013) Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development. Biomaterials 34:160–170

    Article  CAS  PubMed  Google Scholar 

  12. Sotgiu G, Galeotti M, Samorí C et al (2011) Push-pull amino succinimidyl ester thiophene-based fluorescent dyes: synthesis and optical characterization. Chemistry 17:7947–7952. doi:10.1002/chem.201100142

    Article  CAS  PubMed  Google Scholar 

  13. Alexander VM, Sano K, Yu Z et al (2012) Galactosyl human serum albumin-NMP1 conjugate: a near infrared (NIR)-activatable fluorescence imaging agent to detect peritoneal ovarian cancer metastases. Bioconjug Chem 23:1671–1679. doi:10.1021/bc3002419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kolmakov K, Wurm CA, Meineke DNH et al (2014) Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications. Chemistry 20:146–157. doi:10.1002/chem.201303433

    Article  CAS  PubMed  Google Scholar 

  15. Kolmakov K, Wurm C, Sednev MV et al (2012) Masked red-emitting carbopyronine dyes with photosensitive 2-diazo-1-indanone caging group. Photochem Photobiol Sci 11:522–532. doi:10.1039/c1pp05321c

    Article  CAS  PubMed  Google Scholar 

  16. Griffiths J, Millar V, Bahra G (1995) The influence of chain length and electron acceptor residues in 3-substituted 7- N, N-diethylaminocoumarin dyes. Dye Pigment 28:327–339

    Article  CAS  Google Scholar 

  17. Moeckli P (1980) Preparation of some new red fluorescent 4-cyanocoumarin dyes. Dye Pigment 1:3–15

    Article  CAS  Google Scholar 

  18. Raju BB, Varadarajan TS (1995) Spectroscopic studies of 7-diethylamino-3-styryl coumarins. J Photochem Photobiol A Chem 85:263–267. doi:10.1016/1010-6030(94)03905-A

    Article  Google Scholar 

  19. Tathe AB, Gupta VD, Sekar N (2015) Synthesis and combined experimental and computational investigations on spectroscopic and photophysical properties of red emitting 3-styryl coumarins. Dye Pigment 119:49–55. doi:10.1016/j.dyepig.2015.03.023

    Article  CAS  Google Scholar 

  20. Huang S-T, Jian J-L, Peng H-Z et al (2010) The synthesis and optical characterization of novel iminocoumarin derivatives. Dye Pigment 86:6–14

    Article  CAS  Google Scholar 

  21. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  22. Menzel R, Ogermann D, Kupfer S et al (2012) 4-methoxy-1,3-thiazole based donor-acceptor dyes: characterization, X-ray structure, DFT calculations and test as sensitizers for DSSC. Dye Pigment 94:512–524. doi:10.1016/j.dyepig.2012.02.014

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  24. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. doi:10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09, Revision C.01. Gaussian 09, Revis. B.01, Gaussian, Inc., Wallingford CT

  26. Hamdi N, Bouabdallah F, Romerosa A, Benhassen R (2010) Expedious synthesis for α, β-unsaturated coumarin derivatives using boran chelates: a novel class of potential antibacterial and antioxidant agents. C R Chim 13:1261–1268. doi:10.1016/j.crci.2009.10.001

    Article  CAS  Google Scholar 

  27. Razzaq T, Kappe CO (2007) Rapid preparation of pyranoquinolines using microwave dielectric heating in combination with fractional product distillation. Tetrahedron Lett 48:2513–2517. doi:10.1016/j.tetlet.2007.02.052

    Article  CAS  Google Scholar 

  28. Manaev AV, Okhrimenko IN, Lyssenko KA, Traven’ VF (2008) Synthesis and condensation reactions of the boron difluoride complex with 3-acetyl-4-hydroxy-1-methyl-2-quinolone. Russ Chem Bull 57:1734–1739. doi:10.1007/s11172-008-0229-y

    Article  CAS  Google Scholar 

  29. Turro NJ (1978) Modern molecular photochemistry. Benjamin-Cummings, New York

    Google Scholar 

  30. Coe BJ, Harris JA, Asselberghs I et al (2002) Quadratic nonlinear optical properties of N-aryl stilbazolium dyes. Adv Funct Mater 12:110–116. doi:10.1002/1616-3028(20020201)12:2<110::AID-ADFM110>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  31. Lippert E (1957) Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z Elektrochem, Ber Bunsenges Phys Chem 61:962–975. doi:10.1002/bbpc.19570610819

    CAS  Google Scholar 

  32. Valeur B (2001) Molecular Fluorescence, 2nd edn. Wiley VCH. doi:10.1002/3527600248

  33. Sharafudeen KN, Adithya A, Vijayakumar S et al (2011) Multiphoton absorption process and self-focusing effect in coumarin derivative doped PMMA films by Z-scan and optical limiting studies. Curr Appl Phys 11:1089–1093. doi:10.1016/j.cap.2011.02.001

    Article  Google Scholar 

  34. Sun YF, Wang HP, Chen ZY, Duan WZ (2013) Solid-state fluorescence emission and second-order nonlinear optical properties of coumarin-based fluorophores. J Fluoresc 23:123–130. doi:10.1007/s10895-012-1125-2

    Article  PubMed  Google Scholar 

  35. Raj RK, Gunasekaran S, Gnanasambandan T, Seshadri S (2015) Combined spectroscopic and DFT studies on 6-bromo-4-chloro-3-formyl coumarin. Spectrochim Acta Part A Mol Biomol Spectrosc 139:505–514. doi:10.1016/j.saa.2014.12.024

    Article  CAS  Google Scholar 

  36. Abbotto A, Beverina L, Bradamante S et al (2003) A distinctive example of the cooperative interplay of structure and environment in tuning of intramolecular charge transfer in second-order nonlinear optical chromophores. Chem - A Eur J 9:1991–2007. doi:10.1002/chem.200204356

    Article  CAS  Google Scholar 

  37. Oudar JL, Zyss J (1982) Structural dependence of nonlinear-optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals. Phys Rev A 26:2016–2027. doi:10.1103/PhysRevA.26.2016

    Article  CAS  Google Scholar 

  38. Morley JO, Docherty VJ, Pugh D (1987) Non-linear optical properties of organic molecules. Part 2. Effect of conjugation length and molecular volume on the calculated hyperpolarisabilities of polyphenyls and polyenes. J Chem Soc Perkin Trans 2:1351. doi:10.1039/p29870001351

    Article  Google Scholar 

  39. Meshulam G, Kotler Z, Berkovic G (2002) Time-resolved electric-field-induced second harmonic: simultaneous measurement of first and second molecular hyperpolarizabilities. Opt Lett 27:1132–1134. doi:10.1364/OL.27.001132

    Article  CAS  PubMed  Google Scholar 

  40. Heesink GJT, Ruiter AGT, Van Hulst NF, Bölger B (1993) Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering. Phys Rev Lett 71:999–1002. doi:10.1103/PhysRevLett.71.999

    Article  CAS  PubMed  Google Scholar 

  41. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664. doi:10.1063/1.434213

    Article  CAS  Google Scholar 

  42. Carlotti B, Flamini R, Kikaš I et al (2012) Intramolecular charge transfer, solvatochromism and hyperpolarizability of compounds bearing ethenylene or ethynylene bridges. Chem Phys 407:9–19. doi:10.1016/j.chemphys.2012.08.006

    Article  CAS  Google Scholar 

  43. Paley MS, Harris JM, Looser H et al (1989) A solvatochromic method for determining second-order polarizabilities of organic molecules. J Org Chem 54:3774–3778. doi:10.1021/jo00277a007

    Article  CAS  Google Scholar 

  44. McRae EG (1957) Theory of solvent effects on molecular electronic spectra. Frequency Shifts. J Phys Chem 61:562–572. doi:10.1021/j150551a012

    Article  CAS  Google Scholar 

  45. Bruni S, Cariati E, Cariati F et al (2001) Determination of the quadratic hyperpolarizability of trans-4-[4-(dimethylamino)styryl]pyridine and 5-dimethylamino-1,10-phenanthroline from solvatochromism of absorption and fluorescence spectra: A comparison with the electric-field-induced second-harmon. Spectrochim Acta - Part A Mol Biomol Spectrosc 57:1417–1426. doi:10.1016/S1386-1425(00)00483-2

    Article  CAS  Google Scholar 

  46. Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446. doi:10.1063/1.434888

    Article  CAS  Google Scholar 

  47. De Paris R (1982) Nonlinear-optical properties. Phys Rev A 26:2016–2027

    Article  Google Scholar 

  48. Kwon OP, Jazbinsek M, Seo JI et al (2010) First hyperpolarizability orientation in asymmetric pyrrole-based polyene chromophores. Dye Pigment 85:162–170. doi:10.1016/j.dyepig.2009.10.019

    Article  CAS  Google Scholar 

  49. Weaver CS, Smith SW, Hyndman RD et al (1991) + 0.028. Science 252:103–106

    Article  Google Scholar 

  50. Cheng L-T, Tam W, Stevenson SH et al (1991) Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J Phys Chem 95:10631–10643. doi:10.1021/j100179a026

    Article  CAS  Google Scholar 

  51. Dirk CW, Cheng L-T, Kuzyk MG (1992) A simplified three-level model describing the molecular third-order nonlinear optical susceptibility. Int J Quantum Chem 43:27–36. doi:10.1002/qua.560430106

    Article  CAS  Google Scholar 

  52. Kuzyk MG, Dirk CW (1990) Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility. Phys Rev A 41:5098–5109. doi:10.1103/PhysRevA.41.5098

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Abhinav Tathe is thankful to University Grants Commission, New Delhi for providing senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tathe, A.B., Sekar, N. NLOphoric Red Emitting Bis Coumarins with O-BF2-O core - Synthesis, Photophysical Properties and DFT Studies. J Fluoresc 26, 471–486 (2016). https://doi.org/10.1007/s10895-015-1733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1733-8

Keywords

Navigation