Skip to main content
Log in

A new Dual-Channel Chemosensor Based on Chemodosimeter Approach for Detecting Cyanide in Aqueous Solution: a Combination of Experimental and Theoretical Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new colorimetric and fluorescent receptor 1 for the detection of CN has been simply developed. Receptor 1 showed selectively colorimetric and fluorometric responses to CN in a near-perfect aqueous solution, respectively. This sensor displayed an obvious color change from yellow to colorless upon selective binding with CN. In addition, it could function as an “OFF-ON type” fluorescent response through a nucleophilic addition mechanism. The binding mode of receptor 1 with CN was proposed to be 1:1, based on Job plot, 1H NMR titration and ESI-mass spectrometry analysis. Moreover, the sensing mechanism for CN was theoretically supported by DFT and TD-DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu Z, Kim SK, Yoon J (2010) Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006–2009. Chem Soc Rev 39:1457–1466

    Article  PubMed  Google Scholar 

  2. Martínez-Máñez R, Sansenón F (2003) Fluorogenic and chromogenic chemosensor and reagents for anions. Chem Rev 103:4419–4476

    Article  PubMed  Google Scholar 

  3. Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martínez-Máñez R, Sancenón F (2013) Chromogenic and fluorogenic chemosensor and reagents for anions. A comprehensive review of the years 2010–2011. Chem Soc Rev 42:3489–3613

    Article  CAS  PubMed  Google Scholar 

  4. Upadhyay KK, Kumar A (2010) Pyrimidine based highly sensitive fluorescent receptor for Al3+ showing dual signalling mechanism. Org Biomol Chem 8:4892–4897

    Article  CAS  PubMed  Google Scholar 

  5. Wang F, Wang L, Chen X, Yoon J (2014) Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem Soc Rev 43:4312–4324

    Article  CAS  PubMed  Google Scholar 

  6. Hachiya H, Ito S, Fushinuki Y, Masadome T, Asano Y, Imato T (1999) Continuous monitoring for cyanide in waste water with a galvanic hydrogen cyanide sensor using a purge system. Talanta 48:997–1004

    Article  CAS  PubMed  Google Scholar 

  7. Wiley-VCH (Editors) (1999) Ullmann’s Encyclopedia of Industrial Chemistry, 6th edn Wiley-VCH, New York

  8. Koenig R (2000) Wildlife deaths are a grim wake-Up call in Eastern Europe. Science 287:1737–1738

    Article  CAS  PubMed  Google Scholar 

  9. Young C, Tidwell L, Anderson C (2001) Cyanide: social, industrial, and economic aspects. Mineral, Metals, and Materials Society, Warrendale

    Google Scholar 

  10. Sun H, Zhang YY, Si SH, Zhu DR, Fung YS (2005) Piezoelectric quartz crystal (PQC) with photochemically deposited nano-sized Ag particles for determining cyanide at trace levels in water. Sensors Actuators B 108:925–932

    Article  CAS  Google Scholar 

  11. Way JL (1984) Cyanide intoxication and its mechanism of antagonism. Annu Rev Pharmacol Toxicol 24:451–481

    Article  CAS  PubMed  Google Scholar 

  12. Zamecnik J, Tam J (1987) Cyanide in blood by gas chromatography with NP detector and acetonitrile as internal standard. Application on air accident fire victims. Anal Toxicol 11:47–48

    Article  CAS  Google Scholar 

  13. Levin BC, Rechani PR, Gurman JL, Landron F, Clark HM, Yoklavich MF, Rodriguez JR, Dros L, Mattos de Cabrera F, Kaye SJ (1990) Analysis of carboxyhemoglobin and cyanide in blood from victims of the Dupont Plaza Hotel fire in Puerto Rico. Forensic Sci Int 35:151–168

    CAS  Google Scholar 

  14. Matsubara K, Akane A, Maeda C, Shiono H (1990) “First pass phenomenon” of inhaled gas in the fire victims. Forensic Sci Int 46:203–208

    Article  CAS  PubMed  Google Scholar 

  15. Mayes RW (1991) High cyanide level in a homicide victim burned after death: evidence of post-mortem diffusion. J Forensic Sci Int 36:179–184

    CAS  Google Scholar 

  16. Haj-Hussein AT, Christian GD, Ruzicka J (1986) Determination of cyanide by atomic absorption using a flow injection conversion method. Anal Chem 56:38–42

    Article  Google Scholar 

  17. Taheri A, Noroozifar M, Khorasani-Motlagh M (2009) Investigation of a new electrochemical cyanide sensor based on Ag nanoparticles embedded in a three-dimensional sol–gel. J Electroanal Chem 628:48–54

    Article  CAS  Google Scholar 

  18. Minakata K, Nozawa H, Gonmori K, Suzuki M, Suzuki O (2009) Determination of cyanide, in urine and gastric content, by electrospray ionization tandem mass spectrometry after direct flow injection of dicyanogold. Anal Chim Acta 651:81–84

    Article  CAS  PubMed  Google Scholar 

  19. Løbger LL, Petersen HW, Andersen JET (2008) Analysis of cyanide in blood by headspace-isotope-dilution-GC-MS. Anal Lett 41:2564–2586

    Article  Google Scholar 

  20. Li KB, Zang Y, Wang H, Li J, Chen GR, James TD, He XP, Tian H (2014) Hepatoma-selective imaging of heavy metal ions using a ‘clicked’ galactosylrhodamine probe. Chem Commun 50:11735–11737

    Article  CAS  Google Scholar 

  21. Yang L, Li X, Yang J, Qu Y, Hua J (2013) Colorimetric and ratiometric near-infrared fluorescent cyanide chemodosimeter based on phenazine derivatives. Appl Mater Interfaces 5:1317–1326

    Article  CAS  Google Scholar 

  22. Mashraqui SH, Betkar R, Chandiramani M, Estarellas C (2011) Design of a dual sensing highly selective cyanide chemodosimeter based on pyridinium ring chemistry. New J Chem 35:57–60

    Article  CAS  Google Scholar 

  23. Na YJ, Park GJ, Jo HY, Lee SA, Kim C (2014) A colorimetric chemosensor based on a Schiff base for highly selective sensing of cyanide in aqueous solution: the influence of solvents. New J Chem 38:5769–5776

    Article  CAS  Google Scholar 

  24. Yoo J, Kim Y, Kim SJ, Lee CH (2010) Anion-modulated, highly sensitive supramolecular fluorescence chemosensor for C70. Chem Commun 46:5449–5451

    Article  CAS  Google Scholar 

  25. Sun Y, Liu Y, Guo W (2009) Fluorescent and chromogenic probes bearing salicylaldehyde hydrazone functionality for cyanide detection in aqueous solution. Sensors Actuators B 143:171–176

    Article  Google Scholar 

  26. Lee DY, Singh N, Kim MJ, Jang DO (2011) Chromogenic and fluorescent recognition of iodide with a benzimidazole-based tripodal receptor. Org Lett 12:3024–3027

    Article  Google Scholar 

  27. Nam SW, Chen X, Lim J, Kim SH, Kim ST, Cho YH, Yoon J, Park S (2011) In vivo fluorescence imaging of bacteriogenic cyanide in the lung of live mice infected with cystic fibrosis pathogens. PLoS ONE 6, e21387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hong SJ, Yoo J, Kim SH, Kim JS, Yoon J, Lee CH (2009) β-Vinyl substituted calix[4]pyrrole as a selective ratiometric sensor for cyanide anion. Chem Commun 189–191

  29. Shiraishi Y, Nakamura M, Yamamoto K, Hirai T (2014) Selective and sensitive fluorometric detection of cyanide anions in aqueous media by cyanine dyes with indolium–coumarin linkages. Chem Commun 50:11583–11586

    Article  CAS  Google Scholar 

  30. Shiraishi Y, Sumiya S, Manabe K, Hirai T (2011) Thermoresponsive copolymer containing a coumarin–spiropyran conjugate: reusable fluorescent sensor for cyanide anion detection in water. Appl Mater Interfaces 3:4649–4656

    Article  CAS  Google Scholar 

  31. Shiraishi Y, Adachi K, Itoh M, Hirai T (2009) Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor. Org Lett 11:3482–3485

    Article  CAS  PubMed  Google Scholar 

  32. Shiraishi Y, Sumiya S, Hirai T (2011) Highly sensitive cyanide anion detection with a coumarin–spiropyran conjugate as a fluorescent receptor. Chem Commun 47:4953–4955

    Article  CAS  Google Scholar 

  33. Chen B, Ding Y, Li X, Zhu W, Hill JP, Ariga K, Xie Y (2013) Steric hindrance-enforced distortion as a general strategy for the design of fluorescence “turn-on” cyanide probes. Chem Commun 49:10136–10138

    Article  CAS  Google Scholar 

  34. Ding Y, Li T, Zhu W, Xie Y (2012) Highly selective colorimetric sensing of cyanide based on formation of dipyrrin adducts. Org Biomol Chem 10:4201–4207

    Article  CAS  PubMed  Google Scholar 

  35. Tang YH, Qu Y, Song Z, He XP, Xie J, Hua J, Chen GR (2012) Discovery of a sensitive Cu(II)-cyanide “off–on” sensor based on new C-glycosyl triazolyl bis-amino acid scaffold. Org Biomol Chem 10:555–560

    Article  CAS  PubMed  Google Scholar 

  36. Shi DT, Zhou D, Zang Y, Li J, Chen GR, James TD, He XP, Tian H (2015) Selective fluorogenic imaging of hepatocellular H2S by a galactosyl azidonaphthalimide probe. Chem Commun 51:3653–3655

    Article  CAS  Google Scholar 

  37. Lou X, Zhang L, Qin J, Li Z (2008) Analternative approach to develop a highly sensitive and selective chemosensor for the colorimetric sensing of cyanide in water. Chem Commun 44:5848–5850

    Article  Google Scholar 

  38. You GR, Park GJ, Lee SA, Choi YW, Kim YS, Lee JJ, Kim C (2014) A single chemosensor for multiple target anions: the simultaneous detection of CN and OAc in aqueous media. Sensors Actuators B 202:645–655

    Article  CAS  Google Scholar 

  39. You GR, Park GJ, Lee JJ, Kim C (2015) A colorimetric sensor for the sequential detection of Cu2+ and CN in fully aqueous media: practical performance of Cu2+. Dalton Trans 44:9120–9129

    Article  CAS  PubMed  Google Scholar 

  40. Park GJ, Choi YW, Lee D, Kim C (2014) A simple colorimetric chemosensor bearing a carboxylic acid group with high selectivity for CN. Spectrochim Acta A Mol Biomol Spectrosc 132:771–775

    Article  CAS  PubMed  Google Scholar 

  41. Lee SA, You GR, Choi YW, Jo HY, Kim AR, Noh I, Kim SJ, Kim Y, Kim C (2014) A new multifunctional Schiff base as a fluorescence sensor for Al3+ and a colorimetric sensor for CN in aqueous media: an application to bioimaging. Dalton Trans 43:6650–6659

    Article  CAS  PubMed  Google Scholar 

  42. Lee HJ, Park SJ, Sin HJ, Na YJ (2015) A selective colorimetric chemosensor with an electron-withdrawing group for multi-analytes CN and F. Kim, C. New J Chem 39:3900–3907

    Article  CAS  Google Scholar 

  43. Jo TG, Na YJ, Lee JJ, Lee MM, Lee SY, Kim C (2015) A multifunctional colorimetric chemosensor for cyanide and copper(II) ions. Sensors Actuators B 211:498–506

    Article  CAS  Google Scholar 

  44. Jo HY, Lee SA, Na YJ, Park GJ, Kim C (2015) A colorimetric Schiff base chemosensor for CN− by naked-eye in aqueous solution. Inorg Chem Commun 54:73–76

    Article  CAS  Google Scholar 

  45. Song EJ, Kim S, Park GJ, Park SJ, Choi YW, Kim C, Kim J (2014) Selective colorimetric assay of cyanide ions using a thioamide-based probe containing phenol and pyridyl groups. Tetrahedron Lett 55:6965–6968

    Article  CAS  Google Scholar 

  46. Jo HY, Park GJ, Na YJ, Choi YW, You GR, Kim C (2014) Sequential colorimetric recognition of Cu2+ and CN by asymmetric coumarin-conjugated naphthol groups in aqueous solution. Dyes Pigments 109:127–134

    Article  CAS  Google Scholar 

  47. Park GJ, Hwang IH, Song EJ, Kim H, Kim C (2014) A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron 70:2822–2828

    Article  CAS  Google Scholar 

  48. Tomasulo M, Raymo FM (2005) Colorimetric detection of cyanide with a chromogenic oxazine. Org Lett 7:4633–4636

    Article  CAS  PubMed  Google Scholar 

  49. Tomasulo M, Sortino S, White AJP, Raymo FM (2006) Chromogenic oxazines for cyanide detection. J Org Chem 71:744–753

    Article  CAS  PubMed  Google Scholar 

  50. García F, García JM, García-Acosta B, Martínez-Máñez R, Sancenón F, Soto J (2005) Pyrylium-containing polymers as sensory materials for the colorimetric sensing of cyanide in water. Chem Commun 22:2790–2792

    Article  Google Scholar 

  51. Ros-Lis JV, Martínez-Máñez R, Soto J (2002) A selective chromogenic reagent for cyanide determination. Chem Commun 19:2248–2249

    Article  Google Scholar 

  52. Lee H, Chung YM, Ahn KH (2008) Selective fluorescence sensing of cyanide with an o-(carboxamido) trifluoroacetophenone fused with a cyano-1,2-diphenylethlene fluorophore. Tetrahedron Lett 49:5544–5547

    Article  CAS  Google Scholar 

  53. Miyaji H, Kim DS, Chang BY, Park E, Park SM, Ahn KH (2008) High cooperative ion-pair recognition of potassium cyanide using a heteroditopic ferrocenebased crown ether-trifluoroacetylcarboxanilide receptor. Chem Commun 6:753–755

    Article  Google Scholar 

  54. Goswami S, Paul S, Manna A (2013) Carbazole based hemicyanine dye for both “naked eye” and ‘NIR’ fluorescence detection of CN in aqueous solution: from molecules to low cost devices (TLC plate sticks). Dalton Trans 42:10682–10686

    Article  CAS  PubMed  Google Scholar 

  55. Goswami S, Manna A, Paul S, Aich K, Das AK, Chakrabotty S (2013) Highly reactive (<1 min) ratiometric probe for selective ‘naked-eye’ detection of cyanide in aqueous media. Tet Lett 54:1785–1789

    Article  CAS  Google Scholar 

  56. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  57. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  58. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  59. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DF, Pople JA (1982) Self-consitent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  60. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  61. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  62. O’Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  PubMed  Google Scholar 

  63. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA (2004) Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT

  64. Lee JJ, Park GJ, Choi YW, You GR, Kim YS, Lee SY, Kim C (2015) Detection of multiple analytes (CN and F) based on a simple pyrazine-derived chemosensor in aqueous solution: experimental and theoretical approaches. Sensors Actuators B 207:123–132

    Article  CAS  Google Scholar 

  65. Kim HJ, Ko KC, Lee JH, Lee JY, Kim JS (2011) KCN sensor: unique chromogenic and ‘turn-on’ fluorescent chemodosimeter: rapid response and high selectivity. Chem Commun 47:2886–2888

    Article  CAS  Google Scholar 

  66. Bergkamp JJ, Decurtins S, Liu S (2015) Current advances in fused tetrathiafulvalene donor–acceptor systems. Chem Soc Rev 44:863–874

    Article  CAS  PubMed  Google Scholar 

  67. Pina J, Melo JSD, Breusov D, Scherf U (2013) Donor–acceptor–donor thienyl/bithienyl-benzothiadiazole/quinoxaline model oligomers: experimental and theoretical studies. Phys Chem Chem Phys 15:15204–15213

    Article  CAS  PubMed  Google Scholar 

  68. Jia M, Ma X, Yan L, Wang H, Guo Q, Wang X, Wang Y, Zhan X, Xia A (2010) Photophysical properties of intramolecular charge transfer in two newly synthesized tribranched donor − π − acceptor chromophores. J Phys Chem A 114:7345–7352

    Article  CAS  PubMed  Google Scholar 

  69. Job P (1928) Formation and stability of inorganic complexes in solution. Ann Chim 9:113–203

    CAS  Google Scholar 

  70. Tsui YK, Devaraj S, Yen YP (2012) Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: a new selective chromogenic and fluorogenic sensor for cyanide ion. Sensors Actuators B 161:510–519

    Article  CAS  Google Scholar 

  71. Noh JY, Hwang IH, Kim H, Song EJ, Km KB, Kim C (2013) Salicylimine-based colorimetric and fluorescent chemosensor for selective detection of cyanide in aueous buffer. Bull Kor Chem Soc 34:1985–1989

    Article  CAS  Google Scholar 

  72. Na SY, Kim JY, Kim HJ (2013) Colorimetric and fluorometric probe for the highly selective and sensitive detection of cyanide based on coumarinyloxime. Sensors Actuators B 188:1043–1047

    Article  CAS  Google Scholar 

  73. Park S, Kim HJ (2012) Highly selective chemodosimeter for cyanide based on a doubly activated Michael acceptor type of coumarin thiazole fluorophore. Sensors Actuators B 161:317–321

    Article  CAS  Google Scholar 

  74. Park S, Kim HJ (2012) Reaction-based chemosensor for the reversible detection of cyanide and cadmium ions. Sensors Actuators B 168:376–380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Basic Science Research Program through the National Research Foundation of Korea (NRF) (NRF-2014R1A2A1A11051794) are gratefully acknowledged. We thank Nano-Inorganic Laboratory, Department of Nano & Bio chemistry, Kookmin University to access the Gaussian 03 program packages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheal Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.J., Lee, S.Y., Bok, K.H. et al. A new Dual-Channel Chemosensor Based on Chemodosimeter Approach for Detecting Cyanide in Aqueous Solution: a Combination of Experimental and Theoretical Studies. J Fluoresc 25, 1449–1459 (2015). https://doi.org/10.1007/s10895-015-1635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1635-9

Keywords

Navigation