Skip to main content

Advertisement

Log in

Fluorescence Detection of Single DNA Molecules

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Single-molecule detection (SMD) and single-molecule fluorescence resonance energy transfer (smFRET) were conducted using Cy3- and Cy5-labeled single-strand DNAs (ssDNAs) either immobilized on substrates or encapsulated in microdroplets. High-quality fluorescent images were obtained using a total internal reflection fluorescence microscope (TIRFM). In the substrate system, deposition of a low concentration of fluorescence molecules on substrates through electrostatic adsorption showed that most of the fluorescence spots were single molecules, and the mean value of signal to noise ratio (S/N) reached 6.9 ± 0.34. smFRET analysis was conducted through immobilization of donor- and acceptor-labeled oligonucleotides on substrates. In the droplet system, fluorophor-labeled oligonucleotides were injected into T-type microfluidics. Single and double fluorophor-labeled DNA molecules encapsulated in droplets were detected, the FRET efficiency and inter-dye distance of a single donor-acceptor pair were measured accurately. smFRET was conducted detailedly in the tortuous channel for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Soper SA, Shera EB, Martin JC, Jett JH, Hahn JH, Nutter HL, Keller RA (1991) Single-molecule detection of Rhodamine 6G in ethanolic solutions using continuous wave laser excitation. Anal Chem 63(5):432–437

    Article  CAS  Google Scholar 

  2. Keller RA, Ambrose WP, Goodwin PM, Jett JH, Martin JC, Wu M (1996) Single-molecule fluorescence analysis in solution. Appl Spectrosc 50(7):12A–32A

    Article  CAS  Google Scholar 

  3. Nie S, Chiu DT, Zare RN (1994) Probing individual molecules with confocal fluorescence microscopy. Science 266(5187):1018–1021

    Article  CAS  PubMed  Google Scholar 

  4. Liu C, Qu Y, Luo Y, Fang N (2011) Recent advances in single-molecule detection on micro- and nano-fluidic devices. Electrophoresis 32(23):3308–3318

    Article  CAS  PubMed  Google Scholar 

  5. Rotman B (1961) Measurement of activity of single molecules of β-D-galactosidase. Proc Natl Acad Sci U S A 47(12):1981–1991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Schmidt T, Schütz G, Baumgartner W, Gruber H, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci 93(7):2926–2929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hanley DC, Harris JM (2001) Quantitative dosing of surfaces with fluorescent molecules: characterization of fractional monolayer coverages by counting single molecules. Anal Chem 73(21):5030–5037

    Article  CAS  PubMed  Google Scholar 

  8. Lord SJ, Lee H-l D, Moerner W (2010) Single-molecule spectroscopy and imaging of biomolecules in living cells. Anal Chem 82(6):2192–2203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jung G, Wiehler J, Göhde W, Basché T, Steipe B, Bräuchle C (1998) Confocal microscopy of single molecules of the green fluorescent protein. Bioimaging 6(1):54–61

    Article  CAS  Google Scholar 

  10. Chao SY, Ho YP, Bailey VJ, Wang TH (2007) Quantification of low concentrations of DNA using single molecule detection and velocity measurement in a microchannel. J Fluoresc 17(6):767–774

    Article  CAS  PubMed  Google Scholar 

  11. Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Huang B, Babcock H, Zhuang XW (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bates M, Jones SA, Zhuang XW (2013) Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging. Cold Spring Harb Protoc 2013(6):498–520

    PubMed  Google Scholar 

  14. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Clegg RM, Murchie AI, Zechel A, Carlberg C, Diekmann S, Lilley DM (1992) Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction. Biochemistry 31(20):4846–4856

    Article  CAS  PubMed  Google Scholar 

  16. Clegg RM, Murchie A, Zechel A, Lilley D (1993) Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc Natl Acad Sci 90(7):2994–2998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Klostermeier D, Millar DP (2001) RNA conformation and folding studied with fluorescence resonance energy transfer. Methods 23(3):240–254

    Article  CAS  PubMed  Google Scholar 

  18. Walter NG (2001) Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer. Methods 25(1):19–30

    Article  CAS  PubMed  Google Scholar 

  19. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160(5):629–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sorkin A, McClure M, Huang F, Carter R (2000) Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr Biol 10(21):1395–1398

    Article  CAS  PubMed  Google Scholar 

  21. Ishii Y, Yoshida T, Funatsu T, Wazawa T, Yanagida T (1999) Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chem Phys 247(1):163–173

    Article  CAS  Google Scholar 

  22. Ha T, Enderle T, Ogletree D, Chemla D, Selvin P, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci 93(13):6264–6268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hirschfeld T (1976) Optical microscopic observation of single small molecules. Appl Opt 15(12):2965–2966

    Article  CAS  PubMed  Google Scholar 

  24. Castro A, Fairfield FR, Shera EB (1993) Fluorescence detection and size measurement of single DNA molecules. Anal Chem 65(7):849–852

    Article  CAS  Google Scholar 

  25. Xu X-H, Yeung ES (1997) Direct measurement of single-molecule diffusion and photodecomposition in free solution. Science 275(5303):1106–1109

    Article  CAS  PubMed  Google Scholar 

  26. Zheng HZ, Pang DW, Lu ZX, Zhang ZL, Xie ZX (2004) Combing DNA on CTAB-coated surfaces. Biophys Chem 112(1):27–33

    Article  CAS  PubMed  Google Scholar 

  27. Kurita H, Torii K, Yasuda H, Takashima K, Katsura S, Mizuno A (2009) The effect of physical form of DNA on exonucleaseIII activity revealed by single-molecule observations. J Fluoresc 19(1):33–40

    Article  CAS  PubMed  Google Scholar 

  28. Kang SH, Lee S, Yeung ES (2010) Digestion of individual DNA molecules by lambda-exonuclease at liquid–solid interface. Analyst 135(7):1759–1764

    Article  CAS  PubMed  Google Scholar 

  29. Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T (2001) Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294(5543):864–867

    Article  CAS  PubMed  Google Scholar 

  30. Elf J, Li G-W, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316(5828):1191–1194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Knemeyer J-P, Herten D-P, Sauer M (2003) Detection and identification of single molecules in living cells using spectrally resolved fluorescence lifetime imaging microscopy. Anal Chem 75(9):2147–2153

    Article  CAS  PubMed  Google Scholar 

  32. Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75(1):1–41

    Article  Google Scholar 

  33. Whitten WB, Ramsey JM, Arnold S, Bronk BV (1991) Single-molecule detection limits in levitated microdroplets. Anal Chem 63(10):1027–1031

    Article  CAS  Google Scholar 

  34. Barnes MD, Ng KC, Whitten WB, Ramsey JM (1993) Detection of single rhodamine 6G molecules in levitated microdroplets. Anal Chem 65(17):2360–2365

    Article  CAS  Google Scholar 

  35. Reiner JE, Crawford AM, Kishore RB, Goldner LS, Helmerson K, Gilson MK (2006) Optically trapped aqueous droplets for single molecule studies. Appl Phys Lett 89(1):1–4

    Article  Google Scholar 

  36. Yasuda M, Iida A, Ito S, Miyasaka H (2012) Fluorescence detection of single guest molecules in ultrasmall droplets of nonpolar solvent. Phys Chem Chem Phys 14(1):345–352

    Article  CAS  PubMed  Google Scholar 

  37. Zhang H, Shu D, Browne M, Guo P (2010) Construction of a laser combiner for dual fluorescent single molecule imaging of pRNA of phi29 DNA packaging motor. Biomed Microdevices 12(1):97–106

    Article  PubMed Central  PubMed  Google Scholar 

  38. Joo C, Ha T (2012) Single-molecule FRET with total internal reflection microscopy. Cold Spring Harb Protoc 2012(12): pdb. top072058

  39. Lee W, von Hippel PH, Marcus AH (2014) Internally labeled Cy3/Cy5 DNA constructs show greatly enhanced photo-stability in single-molecule FRET experiments. Nucleic Acids Res 1–11

  40. Kim S-H, Choi D-S, Kim D-S (2008) Single-molecule detection of fluorescence resonance energy transfer using confocal microscopy. J Opt Soc Korea 12(2):107–111

    Article  Google Scholar 

  41. Reiner JE, Crawford AM, Kishore RB, Goldner LS, Helmerson K, Gilson MK (2006) Optically trapped aqueous droplets for single molecule studies. Appl Phys Lett 89(1):013904

    Article  Google Scholar 

  42. Jin XY, Jin XF, Ding YJ, Jiang JH, Shen GL, Yu RQ (2008) A piezoelectric immunosensor based on agglutination reaction with amplification of silica nanoparticles. Chin J Chem 26(12):2191–2196

    Article  CAS  Google Scholar 

  43. Wu HX, Dong SQ, Kang JW, Lu XQ (2008) Electrochemical behavior of ascorbic acid on hexaaza macrocyclic copper (II) complex modified Au electrode and its analytical application. Chin J Chem 26(10):1893–1898

    Article  CAS  Google Scholar 

  44. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3(11):891–893

    Article  CAS  PubMed  Google Scholar 

  45. Joo C, Ha T (2012) Preparing sample chambers for single-molecule FRET. Cold Spring Harb Protoc 2012(10):1104–1108

    PubMed  Google Scholar 

  46. Xia T, Li N, Fang X (2013) Single-molecule fluorescence imaging in living cells. Annu Rev Phys Chem 64:459–480

    Article  CAS  PubMed  Google Scholar 

  47. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374(6522):555–559

    Article  CAS  PubMed  Google Scholar 

  48. Yea KH, Lee S, Choo J, Oh CH (2006) Fast and sensitive analysis of DNA hybridization in a PDMS micro-fluidic channel using fluorescence resonance energy transfer. Chem Commun (Camb) 14:1509–1511

    Article  Google Scholar 

  49. Kim S, Chen L, Lee S, Seong GH, Choo J, Lee EK, Oh C-H, Lee S (2007) Rapid DNA hybridization analysis using a PDMS microfluidic sensor and a molecular beacon. Anal Sci 23(4):401–406

    Article  CAS  PubMed  Google Scholar 

  50. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94(5):1826–1835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Joo C, Ha T (2012) Single-molecule FRET with total internal reflection microscopy. Cold Spring Harb Protoc 2012:1223–1237

    Google Scholar 

Download references

Acknowledgments

This work is supported by the State High-Tech Research and Development Plan (863) (grant No. 2012AA02A104) and Foundation for Innovation in Science and Technology, Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Wang, Y. & Wang, Z. Fluorescence Detection of Single DNA Molecules. J Fluoresc 25, 1267–1277 (2015). https://doi.org/10.1007/s10895-015-1615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1615-0

Keywords

Navigation