Skip to main content
Log in

Optical Characterization of Normal, Benign, and Malignant Thyroid Tissue: A Pilot Study

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fine-needle aspiration cytology is the standard technique to diagnose thyroid pathologies. However, this method has a high percentage of inconclusive and false-negative results for benign and malignant lesions. Hence, it is important to search for a new method to assist medical evaluation during these surgical procedures. The use of time-resolved fluorescence techniques to detect biochemical composition and tissue structure alterations could help to develop a portable, minimally invasive, and non-destructive method to assist medical evaluation. In this study, we investigated 17 human thyroid samples by absorbance, fluorescence, excitation, and time-resolved fluorescence measurements. This initial investigation has demonstrated that thyroid fluorescence originates from many endogenous fluorophores and culminates in several bands. The fluorescence lifetimes of benign and malignant lesions were significantly different, as attested by analysis of variance using Tukey test with individual confidence level of 98.06 %. Our results suggest that fluorescence lifetimes of benign and malignant lesions can potentially assist diagnosis. After further investigations, fluorescence methods could become a tool for the surgeon to identify differences between normal and pathological thyroid tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rout P, Shariff S (1999) Diagnostic value of qualitative and quantitative variables in thyroid lesions. Cytopathology 10(3):171–179

    Article  CAS  PubMed  Google Scholar 

  2. Teixeira CS et al (2009) Thyroid tissue analysis through Raman spectroscopy. Analyst 134(11):2361–2370

    Article  CAS  PubMed  Google Scholar 

  3. Zhang X et al (2011) Intraoperative detection of thyroid carcinoma by Fourier transform infrared spectrometry. J Surg Res 171(2):650–656

    CAS  PubMed  Google Scholar 

  4. Gupta N et al (2011) Evaluation of the role of magnetic resonance spectroscopy in the diagnosis of follicular malignancies of thyroid. Arch Surg 146(2):179–182

    Article  PubMed  Google Scholar 

  5. Suh H et al (2011) Elastic light-scattering spectroscopy for discrimination of benign from malignant disease in thyroid nodules. Ann Surg Oncol 18(5):1300–1305

    Article  PubMed  Google Scholar 

  6. Chen X et al (2012) Quantitative analysis of collagen change between normal and cancerous thyroid tissues based on SHG method. Proc SPIE 8329:83290H

    Article  Google Scholar 

  7. Zhou C et al (2010) Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy. J Biomed Opt 15(1):016001–1–016001–9

    Article  Google Scholar 

  8. Pitman MJ et al (2004) The fluorescence of thyroid tissue. Otolaryngol Head Neck Surg 131(5):623–627

    Article  PubMed  Google Scholar 

  9. Ebenezar J et al (2012) Noninvasive fluorescence excitation spectroscopy for the diagnosis of oral neoplasia in vivo. J Biomed Opt 17(9):97007–1

    Article  PubMed  Google Scholar 

  10. Giubileo G et al (2005) Fluorescence spectroscopy of normal and follicular cancer samples from human thyroid. Spectrosc 19(2):79–87

    Article  CAS  Google Scholar 

  11. Paras C et al (2011) Near-infrared autofluorescence for the detection of parathyroid glands. J Biomed Opt 16(6):067012–1–067012–4

    Article  Google Scholar 

  12. Uehlinger P et al (2009) In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence. J Biomed Opt 14(2):024011

    Article  PubMed  Google Scholar 

  13. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Marcu L (2012) Fluorescence lifetime techniques in medical applications. Ann Biomed Eng 40(2):304–331

    Article  PubMed Central  PubMed  Google Scholar 

  15. Chan E, Menovsky T, Welch AJ (1996) Effects of cryogenic grinding on soft-tissue optical properties. Appl Optics 35(22):4526–4532

    Article  CAS  Google Scholar 

  16. Bachmann L et al (2006) Fluorescence spectroscopy of biological tissues—a review. Appl Spectrosc Rev 41(6):575–590

    Article  CAS  Google Scholar 

  17. Chorvat D Jr, Chorvatova A (2009) Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues. Laser Phys Lett 6(3):175–193

    Article  CAS  Google Scholar 

  18. Rayner DM, Szabo AG (1978) Time resolved fluorescence of aqueous tryptophan. Can J Chem 56(5):743–745

    Article  CAS  Google Scholar 

  19. Engelborghs Y (2001) The analysis of time resolved protein fluorescence in multi-tryptophan proteins. Spectrochim Acta 57(11):2255–2270

    Article  CAS  Google Scholar 

  20. Goldman C, Pascutti PG, Piquini P, Ito AS (1995) On the contribution of electron transfer reaction to the quenching of tryptophan fluorescence. J Chem Phys 103:10614–10620

    Article  CAS  Google Scholar 

  21. Platten M, Wick W, Van den Eynde BJ (2012) Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 72(21):5435–5440

    Article  CAS  PubMed  Google Scholar 

  22. Opitz CA et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbonreceptor. Nature 478(7368):197–203

    Article  CAS  PubMed  Google Scholar 

  23. Liu X et al (2010) Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115(17):3520–3530

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Universidade de São Paulo – USP, Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (Projects number 2011/07960-4 and 2012/02460-6), and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Project number 160014/2012-3) for the grants and fellowships given to this research. The authors thank Cynthia Maria de Campos Prado Manso for linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Brandao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandao, M.P., Iwakura, R., Basilio, F.S. et al. Optical Characterization of Normal, Benign, and Malignant Thyroid Tissue: A Pilot Study. J Fluoresc 25, 465–471 (2015). https://doi.org/10.1007/s10895-015-1542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1542-0

Keywords

Navigation