Skip to main content
Log in

Fast Doping of Cu into ZnSe NCs by Hydrazine Promoted Cation Exchange in Aqueous Solution at Room Temperature

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Controllable doping is an effective way of tuning the properties of semiconductor nanocrystals (NCs). In this work, a simple strategy of fast doping Cu ions into ZnSe NCs under ambient conditions was proposed. The principle of doping is based on hydrazine (N2H4) promoted cation exchange reaction. By direct addition of Cu ion stock solution into the preformed ZnSe NCs, Cu doped ZnSe NCs can be obtained. Furthermore, the emission of doped NCs can be tuned by changing the amount of impurity ion addition. The cation exchange reaction is facilitated by three factors: 1) N2H4 addition, 2) fast impurity ions, and 3) partial stabilizer removal. The proposed cation exchange reaction in aqueous solution could be an alternate route for NC doping as well as synthesis of ionic NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Colvin VL, Schlamp MC, Alivisatos AP (1994) Nature 370:354

    Article  CAS  Google Scholar 

  2. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013

    Article  CAS  PubMed  Google Scholar 

  3. Chan WCW, Nie SM (1998) Science 281:2016

    Article  CAS  PubMed  Google Scholar 

  4. Bhargava RN, Gallagher D, Hong X, Nurmikko A (1994) Phys Rev Lett 72:416

    Article  CAS  PubMed  Google Scholar 

  5. Norris DJ, Efros AL, Erwin SC (2008) Science 319:1776

    Article  CAS  PubMed  Google Scholar 

  6. Shim M, Guyot-Sionnest P (2000) Nature 407:981

    Article  CAS  PubMed  Google Scholar 

  7. Mikulec FV, Kuno M, Bennati M, Hall DA, Griffin RG, Bawendi MG (2000) J Am Chem Soc 122:2532

    Article  CAS  Google Scholar 

  8. Pradhan N, Goorskey D, Thessing J, Peng XG (2005) J Am Chem Soc 127:17586

    Article  CAS  PubMed  Google Scholar 

  9. Pradhan N, Battaglia DM, Liu Y, Peng X (2007) Nano Lett 7:312

    Article  CAS  PubMed  Google Scholar 

  10. Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U (2011) Science 332:77

    Article  CAS  PubMed  Google Scholar 

  11. Dalpian GM, Chelikowsky JR (2006) Phys Rev Lett. 96.

  12. Norris DJ, Yao N, Charnock FT, Kennedy TA (2001) Nano Lett 1:3

    Article  CAS  Google Scholar 

  13. Norberg NS, Parks GL, Salley GM, Gamelin DR (2006) J Am Chem Soc 128:13195

    Article  CAS  PubMed  Google Scholar 

  14. Erwin SC, Zu LJ, Haftel MI, Efros AL, Kennedy TA, Norris DJ (2005) Nature 436:91

    Article  CAS  PubMed  Google Scholar 

  15. Suyver JF, Wuister SF, Kelly JJ, Meijerink A (2000) Phys Chem Chem Phys 2:5445

    Article  CAS  Google Scholar 

  16. Pradhan N, Peng X (2007) J Am Chem Soc 129:3339

    Article  CAS  PubMed  Google Scholar 

  17. Dahl JA, Maddux BLS, Hutchison JE (2007) Chem Rev (Wash DC US) 107:2228

    Article  CAS  Google Scholar 

  18. Yu WW, Peng XG (2002) Angew Chem Int Ed 41:2368

    Article  CAS  Google Scholar 

  19. Peng ZA, Peng XG (2001) J Am Chem Soc 123:183

    Article  CAS  PubMed  Google Scholar 

  20. Dai Q, Xiao N, Ning J, Li C, Li D, Zou B, Yu WW, Kan S, Chen H, Liu B, Zou G (2008) J Phys Chem C 112:7567

    Article  CAS  Google Scholar 

  21. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H (2002) J Phys Chem B 106:7177

    Article  CAS  Google Scholar 

  22. Shao P, Zhang Q, Li Y, Wang H (2011) J Mater Chem 21:151

    Article  CAS  Google Scholar 

  23. Wang C, Gao X, Ma Q, Su X (2009) J Mater Chem 19:7016

    Article  CAS  Google Scholar 

  24. Smith AM, Nie S (2011) J Am Chem Soc 133:24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mayers B, Jiang XC, Sunderland D, Cattle B, Xia YN (2003) J Am Chem Soc 125:13364

    Article  CAS  PubMed  Google Scholar 

  26. Alivisatos AP, Son DH, Hughes SM, Yin YD (2004) Science 306:1009

    Article  Google Scholar 

  27. Robinson RD, Sadtler B, Demchenko DO, Erdonmez CK, Wang LW, Alivisatos AP (2007) Science 317:355

    Article  CAS  PubMed  Google Scholar 

  28. Xu SH, Wang CL, Wang ZY, Zhang HS, Yang J, Xu QY, Shao HB, Li RQ, Lei W, Cui YP (2011) Nanotechnology. 22.

  29. Hao E, Zhang H, Yang B, Ren H, Shen J (2001) J Colloid Interface Sci 238:285

    Article  CAS  PubMed  Google Scholar 

  30. Srivastava BB, Jana S, Pradhan N (2011) J Am Chem Soc 133:1007

    Article  CAS  PubMed  Google Scholar 

  31. Han J, Zhang H, Tang Y, Liu Y, Yao X, Yang B (2009) J Phys Chem C 113:7503

    Article  CAS  Google Scholar 

  32. Gaponik N, Talapin DV, Rogach AL, Eychmuller A, Weller H (2002) Nano Lett 2:803

    Article  CAS  Google Scholar 

  33. Moon GD, Ko S, Xia YN, Jeong U (2010) ACS Nano 4:2307

    Article  CAS  PubMed  Google Scholar 

  34. Moon GD, Ko S, Min Y, Zeng J, Xia YN, Jeong U (2011) Nano Today 6:186

    Article  CAS  Google Scholar 

  35. Jiaming Z, Xuke Z, Zhang JY (2009) J Phys Chem C 114:3904

    Google Scholar 

  36. Sung Jun L, Bonghwan C, Taiha J, Shin SK (2008) J Phys Chem C 112:1744

    Article  Google Scholar 

  37. Jain PK, Amirav L, Aloni S, Alivisatos AP (2010) J Am Chem Soc 132:9997

    Article  CAS  PubMed  Google Scholar 

  38. Han JS, Luo XT, Zhou D, Sun HZ, Zhang H, Yang B (2010) J Phys Chem C 114:6418

    Article  CAS  Google Scholar 

  39. Nair PV, Thomas KG (2010) J Phys Chem Lett 1:2094

    Article  CAS  Google Scholar 

  40. Shao H, Wang C, Wang Z, Li R, Xu Q, Xu S, Jiang Y, Sun Q, Bo F, Cui Y (2012) J Colloid Interface Sci 383:43

    Article  CAS  PubMed  Google Scholar 

  41. Seeger A, Chik KP (1968) Phys Status Solidi B 29:455

    Article  CAS  Google Scholar 

  42. Chen D, Viswanatha R, Ong GL, Xie R, Balasubramaninan M, Peng X (2009) J Am Chem Soc 131:9333

    Article  CAS  PubMed  Google Scholar 

  43. Tang ZY, Kotov NA, Giersig M (2002) Science 297:237

    Article  CAS  PubMed  Google Scholar 

  44. Tang ZY, Wang Y, Sun K, Kotov NA (2005) Adv Mater 17:358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Basic Research Program of China (Grant No. 2015CB352002), National Natural Science Foundation of China (Grant Nos. 61475034, 21403034, 61177033), the Fundamental Research Funds for the Central Universities (No. 2242014R30006), the NSF of China (Grant No.61204018), the NSF of Jiangsu Province (Grant No. BK 20141239 and BK 20140635).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunlei Wang or Yiping Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, H., Wang, C., Xu, S. et al. Fast Doping of Cu into ZnSe NCs by Hydrazine Promoted Cation Exchange in Aqueous Solution at Room Temperature. J Fluoresc 25, 305–310 (2015). https://doi.org/10.1007/s10895-015-1509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1509-1

Keywords

Navigation