Skip to main content
Log in

Optical properties of Cu2+ and Fe2+ doped ZnS semiconductor nanoparticles synthesized by co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu and Fe doped ZnS were synthesized by a co-precipitation method using alkyl hydroxyl ethyl dimethyl ammonium chloride (HY) as capping agent. The influence of doping on the optical properties of ZnS:Cu2+ and ZnS:Fe2+ nanoparticles was investigated. The X-ray diffraction (XRD) analysis show that the particles are in cubic structure. The average particle size of the nanoparticles calculated from peak broadening of XRD pattern in the range of 5–2.5 nm. Elemental dispersive analysis of doped samples reveals the presence of doping ions. The transmission electron microscopic studies show that the synthesized particles are in spherical shape. The absorption spectra of all the doped samples are blue shifted as compared with of the undoped ZnS samples. The Pl intensity of doped ZnS nanoparticles was decreased with increasing the amount of doping Cu2+ and Fe2+ into ZnS matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.M. Hammad, J.K. Salem, R.G. Harrison, Nano 4, 225 (2009)

    Article  Google Scholar 

  2. T.M. Hammad, J.K. Salem, R.G. Harrison, Superlattices Microstruct. 47, 335 (2010)

    Article  Google Scholar 

  3. T.M. Hammad, J.K. Salem, J. Nanopar. Res. 13, 2205 (2011)

    Article  Google Scholar 

  4. J.K. Salem, T.M. Hammad, R.G. Harrison, J. Mater. Sci: Mater. Electron. (2012). doi:10.1007/s10854-012-0994-0

    Google Scholar 

  5. T.M. Hammad, J.K. Salem, N.A. Shanab, S. Kuhn, R. Hempelmann, J. Lumin. 157, 88 (2015)

    Article  Google Scholar 

  6. R. Mach, G. Muller, J. Cryst. Growth 86, 866 (1990)

    Article  Google Scholar 

  7. T. Yamaguchi, Y. Yamamoto, T. Tanaka, A. Yoshida, Thin Solid Films 344, 516 (1999)

    Article  Google Scholar 

  8. J.K. Salem, T.M. Hammad, M.A. Draaz, S. Kuhn, R. Hempelmann, J. Mater. Sci. Mater. Electron. 25, 2177 (2014)

    Article  Google Scholar 

  9. J.K. Salem, T.M. Hammad, S. Kuhn, I. Nahal, M.A. Draaz, N.K. Hejazy, R. Hempelmann, J. Mater. Sci: Mater. Electron. 25, 5188 (2014)

    Google Scholar 

  10. G. Murugadoss, J. Lumin. 131, 2216 (2011)

    Article  Google Scholar 

  11. P.H. Borse, N. Deshmukh, R.F. Shinde, S.K. Date, S.K. Kulkarni, J. Mater. Sci. 34, 6087–6093 (1999)

    Article  Google Scholar 

  12. T. Arai, S. Senda, Y. Sato, H. Takahashi, K. Shinoda, B. Jeyadevan, K. Tohji, Chem. Mater. 20, 1997 (2008)

    Article  Google Scholar 

  13. S. Bhattacharya, D. Chakravorty, Chem. Phys. Lett. 444, 319 (2007)

    Article  Google Scholar 

  14. S. Biswas, S. Kar, S. Chaudhuri, J. Phys. Chem. B 109, 17526 (2005)

    Article  Google Scholar 

  15. I. Sarkar, M.K. Sanyal, S. Kar, S. Biswas, S. Banerjee, S. Chaudhuri, S. Takeyama, H. Mino, F. Komori, Phys. Rev. B 75, 224409 (2007)

    Article  Google Scholar 

  16. J. Yu, H. Liu, Y. Wang, W. Jia, J. Lumin. 79, 191 (1998)

    Article  Google Scholar 

  17. J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu, J. Shen, Appl. Phys. Lett. 70, 2335 (1997)

    Article  Google Scholar 

  18. W. Jian, J. Zhuang, D. Zhang, J. Dai, W. Yang, Y. Bai, Mater. Chem. Phys. 99, 494 (2006)

    Article  Google Scholar 

  19. P. Yang, M. Lu, D. Xu, D. Yuan, C. Song, S. Liu, X. Cheng, Opt. Mater. 24, 497 (2003)

    Article  Google Scholar 

  20. P. Yang, M. Lu, D. Xu, D. Yuan, C. Song, G. Zhou, J. Phys. Chem. Solids 62, 1181 (2001)

    Article  Google Scholar 

  21. J.P. Kim, M.R. Davidson, P.H.J. Holloway, J. Appl. Phys. 93, 9597 (2003)

    Article  Google Scholar 

  22. M. Jain, II–IV Semiconductor Compounds (World Scientific Publishing Co Pvt. Ltd, Singapore, 1994), p. 105

    Google Scholar 

  23. S.J. Xu, S.J. Chua, B. Liu, L.M. Gan, C.H. Chew, G.Q. Xu, Appl. Phys. Lett. 73, 478 (1998)

    Article  Google Scholar 

  24. R.N. Bhargava, D. Gallagher, T. Welker, J. Lumin. 60, 275–280 (1994)

    Article  Google Scholar 

  25. Y. Wang, N. Herron, J. Phys. Chem. 95, 525–532 (1991)

    Article  Google Scholar 

  26. W. Chen, F. Su, G. Li, A.G. Joly, J.-O. Malm, J.-O. Bovin, J. Appl. Phys. 92, 1950 (2002)

    Article  Google Scholar 

  27. H. Hu, W. Zhang, Opt. Mater. 28, 36e50 (2006)

    Google Scholar 

  28. P. Yang, M. Lu, D. Xu, D. Yang, J. Chang, G. Zhou, M. Pan, Appl. Phys. A 74, 257–259 (2002)

    Article  Google Scholar 

  29. H.R. Pouretedal, A. Norozi, M.H. Keshavarz, A. Semnani, J. Hazard. Mater. 162, 674–681 (2009)

    Article  Google Scholar 

  30. C. Vatankhah, M.H. Yousefi, A.A. Khosravi, M. Savarian, Eur. J. Appl. Physiol. 48, 20601–20603 (2009)

    Article  Google Scholar 

  31. H.R. Pouretedal, M.H. Keshavarz, J. Alloys Compd. 501, 130–135 (2010)

    Article  Google Scholar 

  32. O. Khani, H.R. Rajabi, M.H. Yousefi, A.A. Khosravi, M. Jannesari, M. Shamsipur, Acta A 79, 361–369 (2011)

    Article  Google Scholar 

  33. H.R. Pouretedal, M.H. Keshavarz, M.H. Yosefi, A. Shokrollahi, A. Zali, Iran. J. Chem. Chem. Eng. 28, 13–19 (2009)

    Google Scholar 

  34. W. Chen, Z.G. Wang, Z.J. Lin, L.Y. Lin, J. Appl. Phys. 82, 3111 (1997)

    Article  Google Scholar 

  35. T. Arai, T. Yoshida, T. Ogawa, J. Appl. Phys. 62, 396 (1987)

    Article  Google Scholar 

  36. M. Agata, H. Kurase, S. Hayashi, K. Yamamoto, Solid State Commun. 76, 1061 (1990)

    Article  Google Scholar 

  37. I. Yu, T. Isobe, M. Senna, J. Phys. Chem. Solids 57, 373 (1996)

    Article  Google Scholar 

  38. H.C. Warad, S.C. Ghosh, B. Hemtanon, C. Thanachayanont, J. Dutta, Sci. Tech. Adv. Mater. 6, 296 (2005)

    Article  Google Scholar 

  39. T. Toyoda, M. Unno, N. Nakajima, Phys. B 316–317, 472 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talaat M. Hammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammad, T.M., Salem, J.K., Kuhn, S. et al. Optical properties of Cu2+ and Fe2+ doped ZnS semiconductor nanoparticles synthesized by co-precipitation method. J Mater Sci: Mater Electron 26, 5495–5501 (2015). https://doi.org/10.1007/s10854-015-3106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3106-0

Keywords

Navigation