Skip to main content
Log in

Fluorescence Modulation and Photochromism in Azobismaleimide Derivatives

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A fluorophore-photochrome system incorporating an aryleneimine type fluorophore and an azobismaleimide photochrome was developed and the photochemical properties of this system were investigated. The photoisomerization of trans-azoaromatic chromophore leads to the increase of the fluorescence intensity of fluorophore. The cis azobismaleimide isomers revert photochemically to the trans form and the emission intensity decreases. The fluorescence intensity of the imine fluorophore can be modulated under irradiation with UV and visible (436 nm) light due to reversible trans-cis-trans photoisomerization of azobismaleimide partner. The photoisomerization kinetics was obeyed a first-order relationship with a rate constant of 1.95 × 10−2 s−1 for azobismaleimide/imine fluorophore system and for polyazothioetherimide/imine derivative the kinetics was described by a biexponential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Russew MM, Hecht S (2010) Photoswitches: from molecules to materials. Adv Mater 22:3348–3360

    Article  PubMed  CAS  Google Scholar 

  2. Liu LH, Nakatani K, Ishow E (2009) Synthesis and photophysical properties of a highly fluorescent azo derivative. New J Chem 33:1402–1408

    Article  CAS  Google Scholar 

  3. Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54

    Article  CAS  Google Scholar 

  4. Yildiz I, Deniz E, Raymo FM (2009) Fluorescence modulation with photochromic switches in nanostructured constructs. Chem Soc Rev 38:1859–1867

    Article  PubMed  CAS  Google Scholar 

  5. Berkovic G, Kongrauz V, Weiss V (2000) Spiropyrans and spirooxazines for memories and switches. Chem Rev 100:1741–1754

    Article  PubMed  CAS  Google Scholar 

  6. Evans SD, Johnson SR, Ringsdorf H, Williams LM, Wolf H (1998) Photoswitching of azobenzene derivatives formed on planar and colloidal gold surfaces. Langmuir 14:6436–6440

    Article  CAS  Google Scholar 

  7. Wang S, Qi Q, Li C, Ding G, Kim SM (2011) Organic dyes incorporating low-band-gap chromophores based on p-extended benzothiadiazole for dye-sensitized solar cells. Dyes Pigm 89:188–192

    Article  CAS  Google Scholar 

  8. Feringa BL (2001) Molecular switches. Wiley-VCH, Weinheim

    Book  Google Scholar 

  9. Raymo FM, Tomasulo M (2005) Electron and energy transfer modulation with photochromic switches. Chem Soc Rev 34:327–336

    Article  PubMed  CAS  Google Scholar 

  10. Tian H, Yang SJ (2004) Recent progresses on diarylethene based photochromic switches. Chem Soc Rev 33:85–97

    Article  PubMed  CAS  Google Scholar 

  11. Chen Y, Xie N (2005) Modulation of a fluorescent switch based on a controllable photochromic diarylethene shutter. J Mater Chem 15:3229–3232

    Article  CAS  Google Scholar 

  12. Piard J, Metivier R, Giraud M, Leaustic A, Yu P, Nakatani K (2009) Photoswitching in diarylethene nanoparticles, a trade-off between bulk solid and solution: towards balanced photochromic and fluorescent properties. New J Chem 33:1420–1426

    Article  CAS  Google Scholar 

  13. Metivier R, Badre S, Meallet-Renault R, Yu P, Pansu RB, Nakatani K (2009) Fluorescence photoswitching in polymer matrix: mutual influence between photochromic and fluorescent molecules by energy transfer processes. J Phys Chem C 113:11916–11926

    Article  CAS  Google Scholar 

  14. Folling MJ, Polyakova S, Belov V, Blaadern A, Rossi ML, Hell SW (2008) Synthesis and characterization of photoswitchable fluorescent silica nanoparticles. Small 4:134–142

    Article  PubMed  CAS  Google Scholar 

  15. Sheepwash MAL, Mitchell RH, Bohne C (2002) Mechanistic insights into the photochromism of trans-10b,10c-dimethyl-10b,10c-dihydropyrene derivatives. J Am Chem Soc 124:4693–4700

    Article  PubMed  CAS  Google Scholar 

  16. Chen L, Wang G, Zhao X (2011) A fluorescence switch based on a controllable photochromic naphthopyran group. J Luminesc 131:1617–1620

    Article  CAS  Google Scholar 

  17. Tomasulo M, Giordani S, Raymo FM (2005) Fluorescence modulation in polymer bilayers containing fluorescent and photochromic dopants. Adv Funct Mater 15:787–794

    Article  CAS  Google Scholar 

  18. Lewis SM, Harbron EJ (2007) Photomodulated PPV emission in a photochromic polymer film. J Phys Chem C 111:4425–4430

    Article  CAS  Google Scholar 

  19. Kumar G, Neckers D (1989) Photochemistry of azobenzene-containing polymers. Chem Rev 89:1915–1925

    Article  CAS  Google Scholar 

  20. Rau H (1990) Photoisomerization of azobenzenes. In: Rabek JF (ed) Photochemistry and photophysics, vol. 2. CRC Press, Boca Raton, pp 119–141

    Google Scholar 

  21. Deniz E, Tomasulo M, Cusido J, Sortino S, Raymo FM (2011) Fast and stable photochromic oxazines for fluorescence switching. Langmuir 27:11773–11783

    Article  PubMed  CAS  Google Scholar 

  22. Airinei A, Fifere N, Homocianu M, Gaina C, Gaina V, Simionescu BC (2011) Optical properties of some new azo photoisomerizable bismaleimide derivatives. Int J Mol Sci 12:6176–6193

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Airinei A, Homocianu M, Fifere N, Gaina C, Gaina V (2011) Optical properties of some bismaleimide derivatives. Optoelectr Adv Mater—Rapid Commun 5:655–660

    CAS  Google Scholar 

  24. Fifere N, Airinei A, Gaina C, Gaina V, Grigoras M, Simionescu BC (2012) Isomerization characteristics of some azobismaleimides. Rev Roum Chim 57:599–607

    CAS  Google Scholar 

  25. Dix LR, Ebdon JR, Flint NJ, O’Dell R (1995) Chain extension and crosslinking of telechelic oligomers I. Michael additions of bisamines to bismaleimides and bis(acetylene ketone)s. Eur Polym J 31:647–652

    Article  CAS  Google Scholar 

  26. Grigoras M, Cianga I, Farcas A, Nastase G, Ivanoiu M (2000) Fully conjugated and soluble polyazomethines containing 1,1′-binaphtyl groups. Rev Roum Chim 45:703–708

    CAS  Google Scholar 

  27. Grigoras M, Catanescu CO, Colotin G (2001) Poly(Schiff base)s containing 1,1′-binaphthyl moieties: synthesis and characterization. Macromol Chem Phys 202:2262–2266

    Article  CAS  Google Scholar 

  28. Ding F, Zhao G, Chen S, Liu F, Zhang L (2009) Chloramphenicol binding to human serum albumin: determination of binding constants and binding sites by steady-state fluorescence. J Mol Struct 929:159–166

    Article  CAS  Google Scholar 

  29. Gayen A, Chatterjee C, Mukhopadhyay C (2008) GM1-induced structural changes of bovine serum albumin after chemical and thermal disruption of the secondary structure: a Spectroscopic comparison. Biomacromolecules 9:974–983

    Article  PubMed  CAS  Google Scholar 

  30. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  31. Grimes AF, Call SE, Vicente DA, English DE, Harbron EJ (2006) Toward efficient photomodulation of conjugated polymer emission: optimizing differential energy transfer in azobenzene-substituted PPV derivatives. J Phys Chem B 110:19183–19190

    Article  PubMed  CAS  Google Scholar 

  32. Smitha P, Asha SK (2007) Structure control for fine tuning fluorescence emission from side-chain azobenzene polymers. J Phys Chem B 111:6364–6373

    Article  PubMed  CAS  Google Scholar 

  33. Shen YQ, Rau H (1991) The environmentally controlled photoisomerization of probe molecules containing azobenzene moieties in solid poly(methyl methacrylate). Makromol Chem 192:945–957

    Article  CAS  Google Scholar 

  34. Ruslim C, Ichimura K (1999) Comparative studies on isomerization behavior and photocontrol of nematic liquid crystals using polymethacrylates with 3,3′- and 4,4′-dihexyloxyazobenzenes in side chains. Macromolecules 32:4254–4263

    Article  CAS  Google Scholar 

  35. Malkin S, Fischer E (1962) Temperature dependence of photoisomerisation. II. Quantum yields of cis-trans isomerization in azo-compounds. J Phys Chem 66:2482–2486

    Article  CAS  Google Scholar 

  36. Zimmerman G, Chow LY, Paik UJ (1958) The photochemical isomerization of azobenzene. J Am Chem Soc 80:3528–3531

    Article  CAS  Google Scholar 

  37. Fifere N, Airinei A, Homocianu M, Gaina C, Gaina V, Simionescu BC (2012) Effect of trans-cis photoisomerisation of azobismaleimide derivatives on the emission intensity of an aryleneimine fluorophore. Rev Roum Chim 57:609–614

    CAS  Google Scholar 

  38. Suzuki I, Ishizaki T, Hoshi T, Anzai J (2002) Fully reversible isomerization of azobenzene chromophores in polyelectrolyte layered assemblies. Macromolecules 35:577–580

    Article  CAS  Google Scholar 

  39. Abdallah D, Whelan J, Dust JM, Hoz S, Buncel E (2009) Energy transfer in the azobenzene-naphthalene light harvesting system. J Phys Chem A 113:6640–6647

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 264115—STREAM is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Airinei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fifere, N., Airinei, A., Gaina, C. et al. Fluorescence Modulation and Photochromism in Azobismaleimide Derivatives. J Fluoresc 24, 345–353 (2014). https://doi.org/10.1007/s10895-013-1299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1299-2

Keywords

Navigation