Skip to main content
Log in

Kinetics of photochemical reactions of biphotochromic compounds based on spironaphthopyran and enamine — conjugation effect

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A novel biphotochromic compound (BPC) with two photochromic fragments, namely spironaphthopyran and hydroxyazomethine, was synthesized and studied by nanosecond laser flash photolysis using the excitation wavelengths of 337, 430, 470 and 500 nm in methanol and toluene. The photoexcitation of BPC results in the formation of at least two colored transients. The first one is the merocyanine form B (the maximum in the absorption spectrum is near 600 nm and the lifetime is 0.1 and 0.05 s in methanol and toluene, respectively) due to the spiro-bond break followed by isomerization. The second one is the trans-keto form AKt (the maximum in the absorption spectra is near 480 nm and the lifetime is 0.1 and 5 ms in methanol and toluene, respectively) as a result of cis-enol or cis-keto tautomer transformations. The relative yields of B and AKt depends essentially on the wavelength of excitation. The form AKt is the key transient formed under excitation with the visible light, whereas its yield under excitation with UV light is comparable with that of B. The specific solvation by methanol molecules favors the spirocycle opening even under visible light excitation. The results obtained for novel BPC were compared with those for other BPC where the same fragments are combined in such a way that the form B is the major one under excitation with UV light whereas it virtually is not observed under visible light excitation. The difference in both BPC is discussed in terms of conjugation (π-coupling) between photochromic fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Minkin, Bistable organic, organometallic, and coordination compounds for molecular electronics andspintronics, Russ. Chem. Bull., 2008, 57, 673–703.

    Article  Google Scholar 

  2. A. P. De Silva, N. D. Mc Clenaghan, Molecular- scale logic gates, Chem.–Eur. J., 2004, 10, 574–586.

    Article  Google Scholar 

  3. A. Fihey, A. Perrier, W. R. Browne and D. Jacquemin, Multiphotochromic molecular systems, Chem. Soc. Rev., 2015, 44, 3719–3759.

    Article  CAS  Google Scholar 

  4. K. Higashiguchi, K. Matsuda, N. Tanifuji and M. Irie, Full-color photochromism of a fused dithienylethene trimer, J. Am. Chem. Soc., 2005, 127, 8922–8923.

    Article  CAS  Google Scholar 

  5. S. Delbaere, G. Vermeersch, M. Frigoli and G. H. Mehl, Bridging the visible: the modulation of the absorption by more than 450 nm, Org. Lett., 2010, 12, 4090–4093.

    Article  CAS  Google Scholar 

  6. J. Andreґasson, S. D. Straight, T. A. Moore, A. L. Moort and D. Gust, Molecular all-photonic encoder-decoder, J. Am. Chem. Soc., 2008, 130, 11122–11128.

    Article  Google Scholar 

  7. J. Andreґasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore and D. Gust, All- photonics multifunctional molecular logic device, J. Am. Chem. Soc., 2011, 133, 11641–11648.

    Article  Google Scholar 

  8. G. Sevez, J. Gan, S. Delbaere, G. Vermeersch, L. Sanguinet, E. Levillain, J.-L. Pozzo, Photochromic performance of a dithienylethene-indolinooxazolidine hybrid, Photochem. Photobiol. Sci., 2010, 9, 131–135.

    Article  CAS  Google Scholar 

  9. A. Samat, V. Lokshin, K. Chamontin, D. Levi, G. Pepe and R. Guglielmetti, Spirooxazine photoisomerization and relaxation in polymer matrixes, Tetrahedron, 2001, 57, 7349–7359.

    Article  CAS  Google Scholar 

  10. J. Berthet, J.-C. Micheau, A. Metelitsa, G. Vermeersch and S. Delbaere, Multistep Thermal Relaxation of Photoisomers in Polyphotochromic Molecules, J. Phys. Chem. A, 2004, 108, 10934–10940.

    Article  CAS  Google Scholar 

  11. M. Frigoly and G. H. Mehl, Multiplrid biphotochromic system, Angew. Chem., Int. Ed., 2005, 44, 5048–5052.

    Article  Google Scholar 

  12. K. Szacilowski, Digital information processing in molecular systems, Chem. Rev., 2008, 108, 3481–3548.

    Article  CAS  Google Scholar 

  13. P. P. Levin, A. S. Tatikolov, N. L. Zaichenko, A. I. Shienok, L. S. Koltsova, O. Yu. Oskina, I. R. Mardaleishvili, L. D. Popov, S. I. Levchenkov and A. A. Berlin, Kinetics of photochemical reactions of multifunctional hybrid compounds based on spironaphthoxazines upon photoexcitation with light of different wavelength, J. Photochem. Photobiol., A, 2013, 251, 141–147.

    Article  CAS  Google Scholar 

  14. N. L. Zaichenko, A. I. Shienok, L. S. Koltsova, I. R. Mardaleishvili, A. S. Tatikolov, P. P. Levin and A. A. Berlin, Bifunctional photosensitive compound for optical procrssrs, Phys. Status Solidi A, 2010, 2746–2748.

    Google Scholar 

  15. V. A. Nadtochenko, P. P. Levin, N. L. Zaichenko, F. E. Gostev, I. V. Shelaev, A. I. Shienok, L. S. Koltsova, O. M. Sarkisov and A. A. Berlin, Spectral and kinetic parameters of transient species in the photolysis of naphthylmethylideneiminospironaphthopyran by excitation at different wavelengths: nano_ and femtosecond laser photolysis, High Energy Chem., 2013, 47, 121–128.

    Article  Google Scholar 

  16. H. Houjou, T. Motoyama, S. Banno, I. Yoshikawa, K. Araki, J. Org. Chem., 2000, 974, 520.

    Google Scholar 

  17. N. L. Zaichenko, P. P. Levin, I. R. Mardaleishvili, A. I. Shienok, L. S. Koltsova, O. Yu. Oskina and A. S. Tatikolov, Synthesis and kinetics of photochemical reactions of novel bifunctional salicylideneiminospironaphthoxazines, Russ. Chem. Bull., 2008, 57, 2394–2401.

    Article  CAS  Google Scholar 

  18. P. P. Levin, N. L. Zaichenko, A. I. Shienok, L. S. Koltsova, I. R. Mardaleishvili and A. S. Tatikolov, Spectral kinetic characteristic of the photoisomerization products of naphthylmethylideneiminospironaphthopyran undused by photolysis at different wavelength, Russ. Chem. Bull., 2012, 61, 532–538.

    Article  CAS  Google Scholar 

  19. Photochromism: Molecules and Systems, ed. H. Dürr and H. Bouas-Laurent, Elsevier, London, 2003, 1218 pp.

    Google Scholar 

  20. M. Z. Zgiersk and A. Grabowska, Photochromism of salicylideneaniline, J. Chem. Phys., 2000, 112, 6329–6337.

    Article  Google Scholar 

  21. W. M. F. Fabian, L. Antonov, D. Nedeltcheva, F. S. Kamounah and P. J. Taylor, Tautomerism in Hydroxynaphthaldehyde Anils and Azo Analogues: a Combined Experimental and Computational Study, J. Chem. Phys. A, 108, 2004, 7603–7612.

    Google Scholar 

  22. M. Ziółek, J. Kubicki, A. Maciejewski, R. Naskrecki and A. Grabowska, Enol–keto tautomerism of aromatic photochromic Schiff base N,N′-bissalicylidene-p-phenylenediamine: Ground state equilibrium and excited state deactivation studied by solvatochromic measurements on ultrafast time scale, J. Chem. Phys., 2006, 124, 124518.

    Article  Google Scholar 

  23. P. Fita, E. Luzina, T. Dziembowska, Cz. Radzewicz and A. Grabowska, Chemistry, photophysics, and ultrafast kinetics of two structurally related Shiff bases containing the naphthalene or quimoline ring, J. Chem. Phys., 2006, 125, 184508.

    Article  CAS  Google Scholar 

  24. M. Ziołek, J. Kubicki, A. Maciejewski, R. Naskrecki, W. Luniewska and A. Grabowska, Unusual conformational effects in proton transfer kinetics of an excited photochromic Schiff base, J. Photochem. Photobiol., A, 2006, 180, 101–108.

    Article  Google Scholar 

  25. M. Ziółek, M. Gil, J. A. Organero and A. Douhal, What is the difference between the dynamics of anion- and keto- type of photochromic salicylaldehyde azine?, Phys. Chem. Chem. Phys., 2010, 12, 2107–2115.

    Article  Google Scholar 

  26. R. S. Becker and W. F. Richey, Photochromic aniles. Mechanism and products of photoreactions and thermal reactions, J. Am. Chem. Soc., 1967, 89, 1298.

    Article  CAS  Google Scholar 

  27. S. Mitra and N. Tamai, Femtosecond spectroscopic study on photochromic salixylidene anilinem, Chem. Phys. Lett., 1998, 282, 391–397.

    Article  CAS  Google Scholar 

  28. S. Mitra and N. Tamai, Dynamics of photochromism in salicylideneanilin: a femtosecond spectroscopic study, Phys. Chem. Chem. Phys., 2003, 5, 4647–4652.

    Article  CAS  Google Scholar 

  29. C. Okabe, T. Nakabayashi, Y. Inokuchi, N. Nishi and H. Sekiya, Ultrafast excited-state dynamics in photochromic N-salicylideneaniline studied by femtosecond time-resolved REMPI spectroscopy, J. Chem. Phys., 2004, 121, 9436–9442.

    Article  CAS  Google Scholar 

  30. M. Ziółek, J. Kubicki, A. Maciejewski, R. Naskręcki and A. Grabowska, Proton transfer reaction and photochromism of the new family of Schiff bases, Phys. Chem. Chem. Phys., 2004, 6, 4682–4689.

    Article  Google Scholar 

  31. M. Sliwa, N. Mouton, C. Ruckebusch, L. Poisson, A. Idrissi, S. Aloise, L. Potier, J. Dubois, O. Poizat and G. Buntinx, Investigation of ultrafast photoinduced processes for salicylidene aniline in solutions and gas phase: towards a general photo-dynamic scheme, Photochem. Photobiol. Sci., 2010, 9, 661–669.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter P. Levin or Natalia L. Zaichenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, P.P., Tatikolov, A.S., Zaichenko, N.L. et al. Kinetics of photochemical reactions of biphotochromic compounds based on spironaphthopyran and enamine — conjugation effect. Photochem Photobiol Sci 15, 382–388 (2016). https://doi.org/10.1039/c5pp00314h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00314h

Navigation