Skip to main content
Log in

A New Thiophenyl Pyrazoline Fluorescent Probe for Cu2+ in Aqueous Solution and Imaging in Live Cell

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new thiophenyl pyrazoline probe for Cu2+ in aqueous solution was synthesized and characterized by IR, NMR, HRMS and X-ray analysis. The probe displays remarkably high selectivity and sensitivity for Cu2+ with a detection limit of 1.919 × 10−7 M in aqueous solution (EtOH:HEPES = 1:1, v/v, 0.02 M, pH = 7.2). In addition, the probe is further successfully used to image Cu2+ in living cells and the probe possesses good reversibility.

A new thiophenyl pyrazoline probe can be used to image Cu2+ in living cells with good reversibility

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Robinson NJ, Winge DR (2010) Copper metallochaperones. Annu Rev Biochem 79:537–562

    Article  PubMed  CAS  Google Scholar 

  2. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  PubMed  CAS  Google Scholar 

  3. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  PubMed  CAS  Google Scholar 

  4. Camakaris J, Voskoboinik I, Mercer JF (1999) Breakthroughs and views molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261:225–232

    Article  PubMed  CAS  Google Scholar 

  5. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    Article  PubMed  CAS  Google Scholar 

  6. Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15:61–76

    Article  PubMed  CAS  Google Scholar 

  7. Brown DR, Kozlowski H (2004) Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans 33:1907–1917

    Article  Google Scholar 

  8. Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774

    Article  PubMed  CAS  Google Scholar 

  9. Gonzales APS, Firmino MA, Nomura CS, Rocha FRP, Oliveira PV, Gaubeur I (2009) Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry. Anal Chim Acta 636:198–204

    Article  PubMed  CAS  Google Scholar 

  10. Budziak D, Silva EL, Campos SD, Carasek E (2003) Application of Nb2O5–SiO2 in pre-concentration and determination of copper and cadmium by flow system with flame atomic absorption spectrometry. Microchim Acta 141:169–174

    Article  CAS  Google Scholar 

  11. Liu Y, Liang P, Guo L (2005) Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta 68:25–30

    Article  PubMed  CAS  Google Scholar 

  12. Guo Y, Din BJ, Liu YW, Changc XJ, Meng SM, Liu JH (2004) Preconcentration and determination of trace elements with 2-aminoacetylthiophenol functionalized Amberlite XAD-2 by inductively coupled plasma–atomic emission spectrometry. Talanta 62:207–213

    Article  PubMed  Google Scholar 

  13. Ensafi AA, Khayamian T, Benvidi A (2006) Simultaneous determination of copper, lead and cadmium by cathodic adsorptive stripping voltammetry using artificial neural network. Anal Chim Acta 561:225–232

    Article  CAS  Google Scholar 

  14. Cheng WL, Sue JW, Chen WC, Chang JL, Zen JM (2010) Activated nickel platform for electrochemical sensing of phosphate. Anal Chem 82:1157–1161

    Article  PubMed  CAS  Google Scholar 

  15. Li C, Wang L, Deng L, Yu H, Huo J, Ma L, Wang J (2009) Electrochemical assessment of the interaction of dihydrogen phosphate with a novel ferrocenyl receptor. J Phys Chem B 113:15141–15144

    Article  PubMed  CAS  Google Scholar 

  16. Lai SJ, Chang XJ, Fu C (2009) Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchim Acta 165:39–44

    Article  CAS  Google Scholar 

  17. Luo Y, Li Y, Lv BQ, Zhou ZD, Xiao D, Choi MMF (2009) A new luminol derivative as a fluorescent probe for trace analysis of copper (II). Microchim Acta 164:411–417

    Article  CAS  Google Scholar 

  18. Pan M, Lin XM, Li GB, Su CY (2011) Progress in the study of metal–organic materials applying naphthalene diimide (NDI) ligands. Coord Chem Rev 255:1921–1936

    Article  CAS  Google Scholar 

  19. Guerchais V, Fillaut JL (2011) Sensory luminescent iridium (III) and platinum (II) complexes for cation recognition. Coord Chem Rev 255:2448–2457

    Article  CAS  Google Scholar 

  20. Liu M, Zhao HM, Quan X, Chen S, Yu HT (2010) Distance-independent quenching of quantum dots by nanoscale-graphene in self-assembled sandwich immunoassay. Chem Commun 46:1144–1146

    Article  CAS  Google Scholar 

  21. Kumar M, Kumar N, Bhalla V, Sharma PR, Kaur T (2012) Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org Lett 14:406–409

    Article  PubMed  CAS  Google Scholar 

  22. Aksuner N, Henden E, Yilmaz I, Cukurovali A (2009) A highly sensitive and selective fluorescent sensor for the determination of copper (II) based on a schiff base. Dye Pigment 83:211–217

    Article  CAS  Google Scholar 

  23. Wen ZC, Yang R, He H, Jiang YB (2006) A highly selective charge transfer fluoroionophore for Cu2+. Chem Commun 42:106–108

    Article  Google Scholar 

  24. Liu ZP, Zhang CL, Wang XQ, He WW, Guo ZJ (2012) Design and synthesis of a ratiometric fluorescent chemosensor for Cu(II) with a fluorophore hybridization approach. Org Lett 14:4378–4381

    Article  PubMed  CAS  Google Scholar 

  25. Chen XT, Tong AJ (2012) Modification of silica nanoparticles with fluorescein hydrozide for Cu(II) sensing. Dye Pigment 95:776–783

    Article  CAS  Google Scholar 

  26. Olimpo GB, Natalia M, Leidi CF, Jose Carlos NF, Vioctor V, Frank HQ, Marco TN, Bruce KC (2012) Design and synthesis of a new coumarin-based “turn-on” fluorescent probe selective for Cu2+. Tetrahedron Lett 53:5280–5283

    Article  Google Scholar 

  27. Ahamed BN, Ghosh P (2011) Selective colorimetric and fluorometric sensing of Cu (II) by iminocoumarin derivative in aqueous buffer. Dalton Trans 40:6411–6419

    Article  PubMed  CAS  Google Scholar 

  28. Kaur P, Kaur S, Singh K, Sharma PR, Kaur T (2011) Indole-based chemosensor for Hg2+ and Cu2+ ions: Applications in molecular switches and live cell imaging. Dalton Trans 40:10818–10821

    Article  PubMed  CAS  Google Scholar 

  29. Li QQ, Peng M, Li NN, Qin JG, Li Z (2012) New colorimetric chemosensor bearing naphthalendiimide unit with large blue-shift absorption for naked eyes detection of Cu2+ ions. Sensor Actuat B 173:580–584

    Article  CAS  Google Scholar 

  30. Sarkar A, Bhattacharya SC (2012) Selective fluorescence resonance energy transfer from serum albumins to a bio-active 3-pyrazolyl-2-pyrazoline derivative: A spectroscopic analysis. J Lumin 132:2612–2618

    Article  CAS  Google Scholar 

  31. Wang ML, Zhang JX, Liu JZ, Xub CX, Ju HX (2002) Intramolecular energy and charge transfer in 5-(9-anthryl)-3-(4-nitrophenyl)-1-phenyl-2-pyrazoline. J Lumin 99:79–83

    Article  CAS  Google Scholar 

  32. Li MM, Huang SY, Ye H, Ge F, Miao JY, Zhao BX (2013) A new pyrazoline-based fluorescent probe for Cu2+ in live cells. J Fluoresc 23:799–806

    Google Scholar 

  33. Zhang Z, Wang FW, Wang SQ, Ge F, Zhao BX, Miao JY (2012) A highly sensitive fluorescent probe based on simple pyrazoline for Zn2+ in living neuron cells. Org Biomol Chem 10:8640–8644

    Article  PubMed  CAS  Google Scholar 

  34. Gong ZL, Ge F, Zhao BX (2011) Novel pyrazoline-based selective fluorescent sensor for Zn2+ in aqueous media. Sensor Actuat B 159:48–153

    Article  Google Scholar 

  35. Liu WY, Li HY, Lv HS, Zhao BX, Miao JY (2012) A rhodamine chromene-based turn-on fluorescence probe for selectively imaging Cu2+ in living cell. Spectrochim Acta A 95:658–663

    Article  CAS  Google Scholar 

  36. Liu WY, Li HY, Zhao BX, Miao JY (2012) A new fluorescent and colorimetric probe for Cu2+ in live cells. Analyst 137:3466–3469

    Article  PubMed  CAS  Google Scholar 

  37. Liu WY, Li HY, Zhao BX, Miao JY (2011) Synthesis, crystal structure and living cell imaging of a Cu2+-specific molecular probe. Org Biomol Chem 9:4802–4805

    Article  PubMed  CAS  Google Scholar 

  38. Gresser R, Hartmann H, Wrackmeyer M, Leo K, Riede M (2011) Synthesis of thiophene-substituted aza-BODIPYs and their optical and electrochemical properties. Tetrahedron 67:7148–7155

    Article  CAS  Google Scholar 

  39. Alhaider AA, Abdelkader MA, Lien EJ (1985) Design, synthesis and pharmacological activities of 2-substituted 4-phenylquinolines as potential antidepressant drugs. J Med Chem 28:1394–1398

    Article  PubMed  CAS  Google Scholar 

  40. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys: Condens Matte 14:2717–2744

    Article  CAS  Google Scholar 

  41. Mattsson AE, Armiento R, Schultz PA, Mattsson TR (2006) Nonequivalence of the generalized gradient approximations PBE and PW91. Phys Rev B 73:195123–195130

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by 973 Program (2010CB933504) and National Natural Science Foundation of China (90813022 and 20972088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Ying Miao or Bao-Xiang Zhao.

Additional information

Meng-Meng Li and Wen-Bo Zhao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, MM., Zhao, WB., Zhang, TT. et al. A New Thiophenyl Pyrazoline Fluorescent Probe for Cu2+ in Aqueous Solution and Imaging in Live Cell. J Fluoresc 23, 1263–1269 (2013). https://doi.org/10.1007/s10895-013-1259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1259-x

Keywords

Navigation