Skip to main content
Log in

Fluorescence Study of the Membrane Effects of Aggregated Lysozyme

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The last decade has seen unprecedented upsurge of interest in the structural and toxic properties of particular type of protein aggregates, amyloid fibrils, associated with a number of pathological states. In the present study fluorescence spectroscopy technique has been employed to gain further insight into the membrane-related mechanisms of amyloid toxicity. To this end, erythrocyte model system composed of liposomes and hemoglobin was subjected to the action of oligomeric and fibrillar lysozyme. Acrylamide quenching of lysozyme fluorescence showed that solvent accessibility of Trp62 and Trp108 increases upon the protein fibrillization. Resonance energy transfer measurements suggested the possibility of direct complexation between hemoglobin and aggregated lysozyme. Using the novel squaraine dye SQ-1 it was demonstrated that aggregated lysozyme is capable of inhibiting lipid peroxidation processes. Fluorescent probes pyrene, Prodan and diphenylhexatriene were employed to characterize the membrane-modifying properties of hemoglobin and lysozyme. Both oligomeric and fibrillar forms of lysozyme were found to exert condensing influence on lipid bilayer structure, with the membrane effects of fibrils being less amenable to modulation by hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stefani M (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim Biophys Acta 1739:5–25

    Article  PubMed  CAS  Google Scholar 

  2. Butterfield SM, Lashuel HA (2010) Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew Chem Int Ed 49:5628–5654

    Article  CAS  Google Scholar 

  3. Wang SS, Liu KN, Chin J (2008) Membrane dipole potential of interaction between amyloid protein and phospholipid membranes is dependent on protein aggregation state. Inst Chem Eng 39:321–328

    Article  CAS  Google Scholar 

  4. Friedman R, Pellarin R, Caflisch A (2009) Amyloid aggregation on lipid bilayers and its impact on membrane permeability. J Mol Biol 387:407–415

    Article  PubMed  CAS  Google Scholar 

  5. Nicolay JP, Gatz S, Liebig G, Gulbins E, Lang F (2007) Amyloid induced suicidal erythrocyte death. Cell Physiol Biochem 19(1–4):175–184

    Article  PubMed  CAS  Google Scholar 

  6. Misiti F, Orsini F, Clementi ME, Masala D, Tellone E, Galtieri A, Giardina B (2008) Amyloid peptide inhibits ATP release from human erythrocytes. Biochem Cell Biol 86(6):501–508

    Article  PubMed  CAS  Google Scholar 

  7. Clementi ME, Giardina B, Colucci D, Galtieri A, Misiti F (2007) Amyloid-beta peptide affects the oxygen dependence of erythrocyte metabolism: a role for caspase 3. Int J Biochem Cell Biol 39(4):727–735

    Article  PubMed  CAS  Google Scholar 

  8. Kosenko EA, Solomadin IN, Kaminsky YG (2009) Effect of the β-amyloid peptide Aβ25–35 and fullerene C60 on the activity of enzymes in erythrocytes. Russ J Bioorg Chem 35(2):157–162

    Article  CAS  Google Scholar 

  9. van Rensburg SJ, Carstens ME, Potocnik FC, Aucamp AK, Taljaard JJ, Koch KR (1992) Membrane fluidity of platelets and erythrocytes in patients with Alzheimer’s disease and the effect of small amounts of aluminium on platelets and erythrocytes membrane. Neurochem Res 17(8):825–829

    Article  PubMed  Google Scholar 

  10. Ajmani RS, Metter EJ, Jaykumar R, Ingram DK, Spangler EL, Abugo OO, Rifkind JM (2000) Hemodynamic changes during aging associated with cerebral blood flow and impaired cognitive function. Neurobiol Aging 21(2):257–269

    Article  PubMed  CAS  Google Scholar 

  11. Mattson MP, Begley JG, Mark RJ, Furukawa K (1997) Abeta 25–35 induces rapid lysis of red blood cells: contrast with Abeta1-42 and examination of underlying mechanisms. Brain Res 771(1):147–153

    Article  PubMed  CAS  Google Scholar 

  12. Perry RT, Gearhart DA, Wiener HW, Harrell LE, Barton JC, Kutlar A, Kutlar F, Ozcan O, Go RC, Hill WD (2008) Hemoglobin binding to Aβ and HBG2 SNP association suggest a role in Alzheimer’s disease. Neurobiol Aging 29(2):185–193

    Article  PubMed  CAS  Google Scholar 

  13. Shaklai N, Yguerabide J, Ranney HM (1977) Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 16(25):5585–5592

    Article  PubMed  CAS  Google Scholar 

  14. Shaklai N, Yguerabide J, Ranney HM (1977) Classification and localization of hemoglobin binding sites on the red blood cell membrane. Biochemistry 16(25):5593–5597

    Article  PubMed  CAS  Google Scholar 

  15. Eisinger J, Flores J, Salhany JM (1982) Association of cytosol hemoglobin with the membrane in intact erythrocytes. Proc Natl Acad Sci USA 79:408–412

    Article  PubMed  CAS  Google Scholar 

  16. Demehin AA, Abugo OO, Jayakumar R, Lakowicz JR, Rifkind JM (2002) Binding of hemoglobin to red cell membranes with eosin-5-maleimide-labeled band 3: analysis of centrifugation and fluorescence lifetime data. Biochemistry 41:8630–8637

    Article  PubMed  CAS  Google Scholar 

  17. Szundi I, Szelényi JG, Breuer JH, Bérczi A (1980) Interactions of haemoglobin with erythrocyte membrane phospholipids in monomolecular lipid layers. Biochim Biophys Acta 595(1):41–46

    Article  PubMed  CAS  Google Scholar 

  18. Papahadjopoulos D, Moscarello M, Eylar EH, Isac T (1975) Effects of proteins on thermotropic phase transitions of phospholipid membranes. Biochim Biophys Acta 401:317–335

    Article  PubMed  CAS  Google Scholar 

  19. Kimelberg HK (1976) Protein-liposome interactions and their relevance to the structure and function of cell membranes. Mol Cell Biochem 10(3):171–190

    Article  PubMed  CAS  Google Scholar 

  20. Szebeni J, Hauser H, Eskelson CD, Watson RR, Winterhalter KH (1988) Interaction of hemoglobin derivatives with liposomes. Membrane cholesterol protects against the changes of hemoglobin. Biochemistry 27:6425–6434

    Article  PubMed  CAS  Google Scholar 

  21. Szebeni J, Di Iorio EE, Winterhalter KH (1985) Encapsulation of hemoglobin in phospholipid liposomes: characterization and stability. Biochemistry 24:2827–2832

    Article  PubMed  CAS  Google Scholar 

  22. Grunwald EW, Richards MP (2006) Mechanisms of heme protein-mediated lipid oxidation using hemoglobin and myoglobin variants in raw and heated washed muscle. J Agric Food Chem 54:8271–8280

    Article  PubMed  CAS  Google Scholar 

  23. Fu X, Xu S, Wang Z (2009) Kinetics of lipid oxidation and off-odor formation in silver carp mince: the effect of lipoxygenase and hemoglobin. Food Res Int 42:85–90

    Article  CAS  Google Scholar 

  24. Ioffe VM, Gorbenko GP, Deligeorgiev T, Gadjev N, Vasilev A (2007) Fluorescence study of protein-lipid complexes with a new symmetric squarylium probe. Biophys Chem 128:75–86

    Article  PubMed  CAS  Google Scholar 

  25. Mui B, Chow L, Hope MJ (2003) Extrusion technique to generate liposomes of defined size. Meth Enzymol 367:3–14

    Article  PubMed  CAS  Google Scholar 

  26. Bartlett G (1959) Phosphorus assay in column chromatography. J Biol Chem 234(3):466–468

    PubMed  CAS  Google Scholar 

  27. Holley M, Eginton C, Schaefer D, Brown LR (2008) Characterization of amyloido-genesis of hen egg lysozyme in concentrated ethanol solution. Biochem Biophys Res Commun 373:164–168

    Article  PubMed  CAS  Google Scholar 

  28. Krasnowska EK, Gratton E, Parasassi T (1998) Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74:1984–1993

    Article  PubMed  CAS  Google Scholar 

  29. Lakowicz JR (2006) Principles of fluorescent spectroscopy, 3rd edn. Springer, Singapore

    Book  Google Scholar 

  30. Li SJ, Nakagawa A, Tsukihara T (2004) Ni2+ binds to active site of hen egg-white lysozyme and quenches fluorescence of Trp62 and Trp108. Biochem Biophys Res Commun 324:529–533

    Article  PubMed  CAS  Google Scholar 

  31. Formoso C, Forster LS (1975) Tryptophan fluorescence lifetimes in lysozyme. J Biol Chem 250:3738–3745

    PubMed  CAS  Google Scholar 

  32. Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CC, Pepys MB (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:787–793

    Article  PubMed  CAS  Google Scholar 

  33. Conio G, Patrone E, Brighetti S (1970) The effect of aliphatic alcohols on the helix-coil transition of poly-L-ornithine and poly-L-glutamic acid. J Biol Chem 245:3335–3340

    PubMed  CAS  Google Scholar 

  34. Tanaka S, Oda Y, Ataka M, Onuma K, Fujiwara S, Yonezawa Y (2001) Denaturation and aggregation of hen egg lysozyme in aqueous ethanol solution studied by dynamic light scattering. Biopolymers 59:370–379

    Article  PubMed  CAS  Google Scholar 

  35. Manning LR, Jenkins WT, Hess JR, Vandegriff K, Winslow RM, Manning JM (1996) Subunit dissociations in natural and recombinant hemoglobins. Protein Sci 5:775–781

    Article  PubMed  CAS  Google Scholar 

  36. Kremer JJ, Pallito MM, Sklansky DJ, Murphy RM (2000) Correlation of β-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 39:10309–10318

    Article  PubMed  CAS  Google Scholar 

  37. Bolton W, Perutz MF (1970) Three dimensional Fourier synthesis of horse deoxyhaemoglobin at 2.8 Å resolution. Nature 228:551–552

    Article  PubMed  CAS  Google Scholar 

  38. Bossi L, Alema S, Calissano P, Marra E (1975) Interaction of different forms of haemoglobin with artificial lipid membranes. Biochim Biophys Acta 375:477–482

    Article  PubMed  CAS  Google Scholar 

  39. Beppu M, Nagoya M, Kikugawa K (1986) Role of heme compounds in the erythrocyte membrane damage induced by lipid hydroperoxide. Chem Pharm Bull 34(12):5063–5070

    PubMed  CAS  Google Scholar 

  40. Carvajal AK, Rustad T, Mozuraityte R, Storro I (2009) Kinetic studies of lipid oxidation induced by hemoglobin measured by consumption of dissolved oxygen in a liposome model system. J Agric Food Chem 57:7826–7833

    Article  PubMed  CAS  Google Scholar 

  41. Trusova VM, Gorbenko GP, Deligeorgiev T, Gadjev N, Vasilev A (2009) A novel squarylium dye for monitoring oxidative processes in lipid membranes. J Fluoresc 19:1017–1023

    Article  PubMed  CAS  Google Scholar 

  42. Hoff B, Strandberg E, Ulrich AS, Tieleman DP, Posten C (2005) 2H-NMR study and molecular dynamics simulation of the location, alignment, and mobility of pyrene in POPC bilayers. Biophys J 88:1818–1827

    Article  PubMed  CAS  Google Scholar 

  43. Duportail G, Lianos P (1996) Fluorescence probing of vesicles using pyrene and pyrene derivatives. In: Rosoff M (ed) Vesicles. Marcel Dekker, Inc, New York, pp 295–371

    Google Scholar 

  44. Kaprovich DS, Blanchard GJ (1995) Relating the polarity-dependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. J Phys Chem 99:3951–3958

    Article  Google Scholar 

  45. Xi J, Guo R, Guo X (2006) Interactions of hemoglobin with lecithin liposomes. Colloid Polym Sci 284:1139–1145

    Article  CAS  Google Scholar 

  46. Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2004) Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys J 86:2929–2941

    Article  PubMed  CAS  Google Scholar 

  47. Gornicki A (2003) The influence of oxidative stress on microviscosity of hemoglobin-containing liposomes. Gen Physiol Biophys 22:121–127

    PubMed  CAS  Google Scholar 

  48. Barenholz Y, Cohen T, Haas E, Ottolenghi M (1996) Lateral organization of pyrene-labeled lipids in bilayers as determined from the deviation from equilibrium between pyrene monomers and excimers. J Biol Chem 271(6):3085–3090

    Article  PubMed  CAS  Google Scholar 

  49. Blackwell MF, Gounaris K, Barber J (1986) Evidence that pyrene excimer formation in membranes is not diffusion-controlled. Biochim Biophys Acta 858:221–234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the grant from the Fundamental Research State Fund (project number F54.4/015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriya M. Trusova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutsenko, O.K., Trusova, V.M., Gorbenko, G.P. et al. Fluorescence Study of the Membrane Effects of Aggregated Lysozyme. J Fluoresc 23, 1229–1237 (2013). https://doi.org/10.1007/s10895-013-1254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1254-2

Keywords

Navigation