Skip to main content
Log in

Green Fluorescent Protein Alters the Transcriptional Regulation of Human Mitochondrial Genes After Gamma Irradiation

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Green fluorescent proteins (GFP), extensively used as reporters in biological and imaging studies, are assumed to be mostly biologically inert. Here, we test the assumption in regard to the transcriptional regulation of 18 mitochondrially encoded genes in GFP expressing human T-cell line (JURKAT cells) exposed to gamma radiation. Using quantitative polymerase chain reaction, we demonstrate that wild type and GFP expressing JURKAT cells have different baseline mitochondrial transcript expression (10 out of the 18 tested genes) and after a single dose of radiation (100 Gy) show a significantly different transcriptional regulation of their mitochondrial genes. While in wild type cells, ten of the tested genes are up-regulated in response to radiation exposure, GFP expressing cells show less transcriptional regulation with a small down-regulation in five genes. Our results indicate that the presence of GFP in the cytoplasm can alter the cellular response to ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

GFP:

Green fluorescent protein

EmGFP:

Emerald green fluorescent protein

FBS:

Fetal bovine serum

DMEM:

Dulbecco’s modified eagle medium

qPCR:

Quantitative polymerase chain reaction

DNA:

Deoxyribonucleic acid

RNA:

Ribonucleic acid

mRNA:

Messenger ribonucleic acid

tRNA:

Transfer ribonucleic acid

rRNA:

Ribosomal ribonucleic acid

SD:

Standard deviation

References

  1. Tsien R (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  2. Hanazono Y, Yu J-M, Dunbar CE, Emmons RVB (1997) Green fluorescent protein retroviral vectors: low titer and high recombination frequency suggest a selective disadvantage. Hum Gene Ther 8:1313–1319

    Article  PubMed  CAS  Google Scholar 

  3. Nishimura S, Nagai S, Sata M, Katoh M, Yamashita H, Saeki Y, Nagai R, Sugiura S (2006) Expression of green fluorescent protein impairs the force-generating ability of isolated rat ventricular cardiomyocytes. Mol Cell Biochem 286:59–65

    Article  PubMed  CAS  Google Scholar 

  4. Agbulut O, Huet A, Niederlader N, Puceat M, Menasche P, Coirault C (2007) Green fluorescent protein impairs actin-myosin interactions by binding to the actin-binding site of myosin. J Biol Chem 282:10465–10471

    Article  PubMed  CAS  Google Scholar 

  5. Wu Q, Cui H, Li Q, Zhao Y, Luo J (2008) Expression of EGFP and NPTII protein is not associated with organ abnormalities in deceased transgenic cloned cattle. Cloning Stem Cells 10:421–428

    Article  PubMed  Google Scholar 

  6. Liu H-S, Jan M-S, Chou C-K, Chen P-H, Ke N-J (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260:712–717

    Article  PubMed  CAS  Google Scholar 

  7. Hanazono Y, Terao K, Shibata H, Nagashima T, Ageyama N, Asano T, Ueda Y, Kato I, Kume A, Hasegawa M, Ozawa K (2002) Introduction of the green fluorescent protein gene into hematopoietic stem cells results in prolonged discrepancy of in vivo transduction levels between bone marrow progenitors and peripheral blood cells in nonhuman primates. J Gene Med 4:470–477

    Article  PubMed  CAS  Google Scholar 

  8. Perry ACF, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R (1999) Mammalian transgenesis by intracytoplasmic sperm injection. Science 284:1180–1183

    Article  PubMed  CAS  Google Scholar 

  9. Devgan V, Rao MRS, Seshagiri PB (2004) Impact of embryonic expression of enhanced green fluorescent protein on early mouse development. Biochem Biophys Res Commun 313:1030–1036

    Article  PubMed  CAS  Google Scholar 

  10. Hanson DA, Ziegler SF (2004) Fusion of green fluorescent protein to the C-terminus of granulysin alters its intracellular localization in comparison to the native molecule. J Negat Results Biomed 3:2

    Article  PubMed  Google Scholar 

  11. Zhang F, Hackett NR, Lam G, Cheng J, Pergolizzi R, Luo L, Shmelkov SV, Edelberg J, Crystal RG, Rafii S (2003) Green fluorescent protein selectively induces HSP70-mediated up-regulation of COX-2 expression in endothelial cells. Blood 102:2115–2121

    Article  PubMed  CAS  Google Scholar 

  12. Badrian B, Bogoyevitch MA (2007) Changes in the transcriptional profile of cardiac myocytes following freen fluorescent protein expression. DNA Cell Biol 26:727–736

    Article  PubMed  CAS  Google Scholar 

  13. Agbulut O, Coirault C, Niederlander N, Huet A, Vicart P, Hagege A, Puceat M, Menasche P (2006) GFP expression in muscle cells impairs actin-myosin interactions: implications for cell therapy. Nat Methods 3:331–331

    Article  PubMed  CAS  Google Scholar 

  14. Huang W-Y, Aramburu J, Douglas PS, Izumo S (2000) Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med 6:482–483

    Article  PubMed  CAS  Google Scholar 

  15. Guo J-K, Cheng E-C, Wang L, Swenson E, Ardito T, Kashgarian M, Cantley L, Krause D (2007) The commonly used β-actin-GFP transgenic mouse strain develops a distinct type of glomerulosclerosis. Transgenic Res 16:829–834

    Article  PubMed  CAS  Google Scholar 

  16. Redding KM, Chen BL, Singh A, Re RN, Navar LG, Seth DM, Sigmund CD, Tang WW, Cook JL (2010) Transgenic mice expressing an intracellular fluorescent fusion of angiotensin II demonstrate renal thrombotic microangiopathy and elevated blood pressure. Am J Physiol-Heart C 298:H1807–H1818

    Article  CAS  Google Scholar 

  17. Gubina NE, Merekina OS, Ushakova TE (2010) Mitochondrial DNA transcription in mouse liver, skeletal muscle, and brain following lethal X-ray irradiation. Biochemistry (Mosc) 75:777–783

    Article  CAS  Google Scholar 

  18. Kulkarni R, Marples B, Balasubramaniam M, Thomas RA, Tucker JD (2010) Mitochondrial gene expression changes in normal and mitochondrial mutant cells after exposure to ionizing radiation. Radiat Res 173:635–644

    Article  PubMed  CAS  Google Scholar 

  19. Gong B, Chen Q, Almasan A (1998) Ionizing radiation stimulates mitochondrial gene expression and activity. Radiat Res 150:505–512

    Article  PubMed  CAS  Google Scholar 

  20. Schilling-Toth B, Sandor N, Kis E, Kadhim M, Safrany G, Hegyesi H (2011) Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation. Mutat Res 716:33–39

    Article  PubMed  CAS  Google Scholar 

  21. Erickson GA, Koppenol WH (1987) Effects of gamma-irradiation on isolated rat liver mitochondria. Int J Radiat Biol Relat Stud Phys Chem Med 51:147–155

    Article  PubMed  CAS  Google Scholar 

  22. May A, Bohr VA (2000) Gene-specific repair of γ-ray-induced DNA strand breaks in colon cancer cells: no coupling to transcription and no removal from the mitochondrial genome. Biochem Biophys Res Commun 269:433–437

    Article  PubMed  CAS  Google Scholar 

  23. Pinto M, Prise KM, Michael BD (2002) Quantification of radiation induced DNA double-strand breaks in human fibroblasts by PFGE: testing the applicability of random breakage models. Int J Radiat Biol 78:375–388

    Article  PubMed  CAS  Google Scholar 

  24. Fricke H, Hart EJ (eds) (1966) Chemical dosimetry, 2nd edn. Academic, New York, p 462

    Google Scholar 

  25. Cheng KT, Hou WC, Huang YC, Wang LF (2003) Baicalin induces differential expression of cytochrome C oxidase in human lung H441 Cell. J Agr Food Chem 51:7276–7279

    Article  CAS  Google Scholar 

  26. Banati RB, Egensperger R, Maassen A, Hager G, Kreutzberg GW, Graeber MB (2004) Mitochondria in activated microglia in vitro. J Neurocytol 33:535–541

    Article  PubMed  Google Scholar 

  27. Clayton DA (ed) (1996) Mitochondrial DNA replication. Cold Spring Harbor Lab Press, New York, p 1058

    Google Scholar 

  28. Clayton DA (2000) Transcription and replication of mitochondrial DNA. Hum Reprod 15:11–17

    Article  PubMed  Google Scholar 

  29. Jacobsen LB, Calvin SA, Lobenhofer EK (2009) Transcriptional effects of transfection: the potential for misinterpretation of gene expression data generated from transiently transfected cells. Biotechniques 47:617–624

    Article  PubMed  CAS  Google Scholar 

  30. Iborra F, Kimura H, Cook P (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol 2:9

    Article  PubMed  Google Scholar 

  31. Kukat A, Kukat C, Brocher J, Schäfer I, Krohne G, Trounce IA, Villani G, Seibel P (2008) Generation of ρ0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses. Nucl Acids Res 36:e44

    Article  PubMed  Google Scholar 

  32. Kitano T, Umetsu K, Tian W, Osawa M (2007) Two universal primer sets for species identification among vertebrates. Int J Legal Med 121:423–427

    Article  PubMed  Google Scholar 

  33. Rorbach J, Yusoff AA, Tuppen H, Abg-Kamaludin DP, Chrzanowska-Lightowlers ZMA, Taylor RW, Turnbull DM, McFarland R, Lightowlers RN (2008) Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res 36:3065–3074

    Article  PubMed  CAS  Google Scholar 

  34. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D (2010) ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation. Nucleic Acids Res 38:5554–5568

    Article  PubMed  CAS  Google Scholar 

  35. Garbian Y, Ovadia O, Dadon S, Mishmar D (2010) Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters. PLoS One 5:e9985

    Article  PubMed  Google Scholar 

  36. Owens KM, Kulawiec M, Desouki MM, Vanniarajan A, Singh KK (2011) Impaired OXPHOS complex III in breast cancer. PLoS One 6:e23846

    Article  PubMed  CAS  Google Scholar 

  37. de Vries DD, van Engelen BG, Gabreëls FJ, Ruitenbeek W, van Oost BA (1993) A second missense mutation in the mitochondrial ATPase 6 gene in Leigh’s syndrome. Ann Neurol 34:410–412

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks should be given to Dr Guo Jun Lin for providing the fluorescent microscopic image. ANSTO’s External Radiation Group, for their technical assistance in performing the irradiation experiments and provision of technical details for the “Gamma irradiation” section. Dr Anya Salih, for discussing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winnie Wai-Ying Kam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kam, W.WY., Middleton, R., Lake, V. et al. Green Fluorescent Protein Alters the Transcriptional Regulation of Human Mitochondrial Genes After Gamma Irradiation. J Fluoresc 23, 613–619 (2013). https://doi.org/10.1007/s10895-013-1206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1206-x

Keywords

Navigation