Skip to main content
Log in

On the Fluorescence of Luminol in a Silver Nanoparticles Complex

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The photophysical properties of luminol in a silver nanoparticles complex have been studied by steady-state and time resolved fluorescence spectroscopy. The effect of the serum albumin on the luminol fluorescence in the silver nanoparticles has been also investigated. It was found that the fluorescence quantum yield value of luminol in a silver nanoparticles complex is ϕ = 0.00407. The decrease of the average fluorescence lifetime value of the luminol in the silver nanoparticles complex was found to be low, <τ> = 1.712 ns. The luminol does not bind to the serum albumins in the presence of silver nanoparticles. The formation of a new species of luminol on silver nanoparticles is discussed. The results have influence regarding the use of luminol as an assay for bio-analytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kricka LJ (1995) Chemiluminescence and bioluminescence. Anal Chem 67:499R–502R

    Article  PubMed  CAS  Google Scholar 

  2. Yeshion TE (1991) In Bioluminescence and Chemiluminescence: Current Status. In: Stanley PE, Kricka LJ (eds), John Wiley: New York

  3. Bowie AR, Sanders MG, Worsfold PJ (1996) Analytical applications of liquid-phase chemiluminescence reactions. A review. J Biolumin Chemilumin 11:61–90

    Article  PubMed  CAS  Google Scholar 

  4. Budavari S (ed) (1996) The Merck Index, 12th ed.; Merck & Co., Inc.: Whitehall, NJ

  5. Wu Y, Zhuang Y, Liu S, He L (2008) Phenylboronic acid immunoaffinity reactor coupled with flow injection chemiluminescence for determination of α-fetoprotein. Anal Chim Acta 630:186–193

    Article  PubMed  CAS  Google Scholar 

  6. Zhang H, Shibata T, Krawczyk T, Kabashima T, Lu J, Lee MK, Kai M (2009) Facile detection of proteins on a solid—phase membrane by direct binding of dextran—based luminol-biotin chemiluminescent polymer. Talanta 79:700–705

    Article  PubMed  CAS  Google Scholar 

  7. Bi S, Zhou H, Zhang S (2009) Multilayers enzymes-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosens Bioelectron 24:2961–2966

    Article  PubMed  CAS  Google Scholar 

  8. Voicescu M, Ionita G, Vasilescu M, Meghea A (2006) The effect of cyclodextrins on the luminol-hydrogen peroxide chemiluminescence. J Incl Phenom Macrocyclic Chem 54:217–219

    Article  CAS  Google Scholar 

  9. Ghoneim N (1991) Solvatochromic spectroscopy of luminol in solvent mixtures. J Photochem Photobiol A: Chem 60:175–182

    Article  CAS  Google Scholar 

  10. Guha D, Das R, Mitra S, Mukherjee S (1997) Fluorescence studies on Luminol in water-organic solvent mixtures. Indian J Chem 36A:307

    CAS  Google Scholar 

  11. Mitra S, Das R, Mukherjee S (1995) Complex formation and photophysical properties of luminol: solvent effects. J Photochem Photobiol A: Chem 87:225

    Article  CAS  Google Scholar 

  12. Bhattacharjee U, Mitra S, Das R, Mukherjee S (1996) Spectroscopic studies and fluorescence quenching of luminol in aqueous medium. Indian J Chem 35A:633

    CAS  Google Scholar 

  13. Breslow R (1991) Hydrophobic effects on simple organic reactions in water. Acc Chem Res 24:159–164

    Article  CAS  Google Scholar 

  14. Guha D, Mitra S, Das R, Mukherjee S (1999) Indian J Chem 38A:760

    CAS  Google Scholar 

  15. Lissi EA, Gallardo S, Sepulveda P (1992) Fluorescence quenching in cetyltrimethylammonium chloride micelles and dioctadecyldimethylammonium chloride giant vesicles. A comparison. J Colloid Interface Sci 152:104–113

    Article  CAS  Google Scholar 

  16. Abuin EB, Lissi EA (1993) Quenching rate constants in aqueous solution: influence of the hydrophobic effect. J Photochem Photobiol A: Chem 71:263–267

    Article  CAS  Google Scholar 

  17. Will G, Kudryashov E, Duggan E, Fitzmaurice D, Buckin V, Waghome E, Mukherjee S (1999) Excited state complex formation between 3-aminophtalhydrazide and DNA: a fluorescence quenching reaction. Spectrochim Acta Part A 55:2711–2717

    Article  Google Scholar 

  18. Voicescu M, Vasilescu M, Meghea A (2000) Energy transfer from the aminophtalate dianion to fluoresceine. J Fluoresc 10:229–236

    Article  CAS  Google Scholar 

  19. Voicescu M, Vasilescu M, Constantinescu T, Meghea A (2002) On the luminescence of luminol in DMSO in the presence of potassium superoxide-18 crown 6 ether and fluorescein. J Lumin 97:60–67

    Article  CAS  Google Scholar 

  20. Vasilescu M, Constantinescu T, Voicescu M, Lemmetyinen H, Vuorima E (2003) Spectrophotometric study of luminol in Dimethyl sulfoxide—potassium hydroxide. J Fluoresc 13:315–322

    Article  CAS  Google Scholar 

  21. Vasilescu M, Voicescu M, Lemmetyinen H (2004) Steady-state and time-resolved fluorescence of luminol in different solvent mixtures. Rev Roum Chim 49(10):841–849

    CAS  Google Scholar 

  22. Moyon NS, Chandra AK, Mitra S (2010) Effect of solvent hydrogen bonding on excited-state properties of luminol: a combined fluorescence and DFT study. J Phys Chem A 114:60–67

    Article  PubMed  CAS  Google Scholar 

  23. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  PubMed  CAS  Google Scholar 

  24. Olson RE, Christ DD (1996) Plasma protein binding of drugs. Ann Rep Med Chem 31:327–336

    Article  CAS  Google Scholar 

  25. Moyon NS, Mitra S (2010) On the interaction of luminol with human serum albumin: nature and thermodynamics of ligand binding. Chem Phys Lett 498:178–183

    Article  CAS  Google Scholar 

  26. Moyon NS, Mitra S (2011) Luminol fluorescence quenching in biomimicking environments: sequestration of fluorophore in hydrophobioc domain. J Phys Chem B 115:10163–10172

    Article  PubMed  CAS  Google Scholar 

  27. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology Rev 23:1–6

    Google Scholar 

  28. Ray K, Chowdhury MH, Szmacinski H, Lakowicz JR (2008) Metal-enhanced intrinsic fluorescence of proteins on silver nanostructured surfaces towards label-free detection. J Phys Chem C 112:17957–17963

    Article  CAS  Google Scholar 

  29. Szmacinski H, Ray K, Lakowicz JR (2009) Metal-enhanced fluorescence of tryptophan residues in proteins: application towards label-free bioassays. Anal Biochem 385(2):538–364

    Article  Google Scholar 

  30. Levin AD, Aseichev AV, Azizova OA, Bekman EM, Vysotskii VV, Uryupina OY, Roldughin VI (2010) Modification of resonance light scattering spectra of silver nanoparticles due to their interactions with protein molecules. Colloidal J 72:23–30

    Article  CAS  Google Scholar 

  31. Liu Y, Liu X, Wang X (2011) Biomimetic synthesis of gelatin polypeptide-assisted noble-metal nanoparticles and their interaction study. Nanoscale Res Lett 6(22):1–11

    CAS  Google Scholar 

  32. Prashant KJ, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc Chem Res 41(12):1578–1586

    Article  Google Scholar 

  33. De-Llanos R, Sanchez-Cortes S, Domingo C, Garcia-Ramos JV (2011) Surface Plasmon effects on the binding of antitumoral drug emodin to bovine serum albumin. J Phys Chem C 115:12419–12429

    Article  CAS  Google Scholar 

  34. Voicescu M, Ionescu S, Angelescu DG (2012) Spectroscopic and coarse-grained simulation studies of the BSA and HAS protein adsorption on silver nanoparticles. J Nanopart Res 14:1174. doi:10.1007/s11051-012-1174-0

    Article  Google Scholar 

  35. Angelescu DG, Vasilescu M, Somoghi R, Donescu D, Teodorescu VT (2010) Kinetics and optical properties of the silver nanoparticles in aqueous L64 block copolymer solutions. Colloid Surf A: Physicochem Eng Aspects 366:155–162

    Article  CAS  Google Scholar 

  36. Melhuish WH (1961) J Phys Chem 65:229

    Article  CAS  Google Scholar 

  37. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York

    Book  Google Scholar 

  38. Voicescu M, Heinrich M, Hellwig P (2009) Steady—state and time resolved fluorescence analysis of Tyrosine-Histidine model compounds. J Fluoresc 19:257–266

    Article  PubMed  CAS  Google Scholar 

  39. Voicescu M, El Khoury Y, Martel D, Heinrich M, Hellwig P (2009) Spectroscopic analysis of tyrosine derivatives: on the role of the Tyrosine—Histidine covalent linkage in Cytochrome c Oxidase. J Phys Chem B 113:13429–13436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is a part from the research project proposal, UEFISCDI, project number PN-II-RU-TE-2012-3-0055. This work has been also performed in the frame of the Romanian Academy programme of the INFRANANOCHEM Project

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Voicescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voicescu, M., Ionescu, S. On the Fluorescence of Luminol in a Silver Nanoparticles Complex. J Fluoresc 23, 569–574 (2013). https://doi.org/10.1007/s10895-013-1204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1204-z

Keywords

Navigation