Skip to main content
Log in

Characterization of the Binding of Metoprolol Tartrate and Guaifenesin Drugs to Human Serum Albumin and Human Hemoglobin Proteins by Fluorescence and Circular Dichroism Spectroscopy

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhong W, Wang Y, Yu JS, Liang NK, Tu S (2004) The interaction of human serum albumin with a novel antidiabetic agent-SU-118. J Pharm Sci 93:1039–1046

    Article  PubMed  CAS  Google Scholar 

  2. Bi S, Yan L, Sun Y, Zhang H (2011) Investigation of ketoprofen binding to human serum albumin by spectral methods. Spectrochim Acta A 78:410–414

    Article  Google Scholar 

  3. Shcharbin D, Klajnert B, Mazhul V, Bryszewska M (2005) Dendrimer interactions with hydrophobic fluorescent probes and human serum albumin. J Fluoresc 15:21–28

    Article  PubMed  CAS  Google Scholar 

  4. Sun SF, Zhou B, Hou NH, Liu Y, Xiang GY (2006) Studies on the interaction between oxaprozin-E and bovine serum albumin by spectroscopic methods. Int J Biol Macromol 39:197–200

    Article  PubMed  CAS  Google Scholar 

  5. Ni Y, Su S, Kokot S (2008) Small molecule-biopolymer interactions: ultraviolet–visible and fluorescence spectroscopy and chemometrics. Anal Chim Acta 628:49–56

    Article  CAS  Google Scholar 

  6. Cheema MA, Taboada P, Barbosa S, Castro E, Siddiq M, Mosquera V (2007) Energetics and conformational changes upon complexation of a phenothiazine drug with human serum albumin. Biomacromolecules 8:2576–2585

    Article  PubMed  CAS  Google Scholar 

  7. Tanaka M, Asahi Y, Masuda S (1995) Interaction between drugs and water-soluble polymers. VII. Binding of berberine with bovine serum albumin. J Macromol Sci A 32:339–347

    Google Scholar 

  8. Ayranci E, Duman O (2004) Binding of fluoride, bromide and iodide to bovine serum albumin studied with ion-selective electrodes. Food Chem 84:539–543

    Article  CAS  Google Scholar 

  9. Ayranci E, Duman O (2004) Binding of lead ion to bovine serum albumin studied by ion-selective electrode. Protein Peptide Lett 11:331–337

    Article  CAS  Google Scholar 

  10. Garabagiu S (2011) A spectroscopic study on the interaction between gold nanoparticles and hemoglobin. Mater Res Bull 46:2474–2477

    Article  CAS  Google Scholar 

  11. Faridbod F, Ganjali MR, Larijani B, Riahi S, Saboury AA, Hosseini M, Norouzi P, Pillip C (2011) Interaction study of pioglitazone with albumin by fluorescence spectroscopy and molecular docking. Spectrochim Acta A 78:96–101

    Article  Google Scholar 

  12. Bani-Yaseen AD (2011) Spectrofluorimetric study on the interaction between antimicrobial drug sulfamethazine and bovine serum albumin. J Lumin 131:1042–1047

    Article  Google Scholar 

  13. Bakkialakshmi S, Shanthi B, Chandrakala D (2011) Interaction of potassium mono and diphosphates with bovine serum albumin studied by fluorescence quenching method. J Fluoresc 21:687–692

    Article  PubMed  CAS  Google Scholar 

  14. Zhang J, Sun HH, Zhang YZ, Yang LY, Dai J, Liu Y (2012) Interaction of human serum albumin with indomethacin: spectroscopic and molecular modeling studies. J Solut Chem 41:422–435

    Article  CAS  Google Scholar 

  15. Wu X, Liu J, Wang Q, Xue W, Yao X, Zhang Y, Jin J (2011) Spectroscopic and molecular modeling evidence of clozapine binding to human serum albumin at subdomain IIA. Spectrochim Acta A 79:1202–1209

    Article  CAS  Google Scholar 

  16. Maciazek-Jurczyk M, Sulkowska A, Bojko B, Rownicka-Zubik J, Szkudlarek-Hasnik A, Zubik-Skupien I, Gora A, Dubas M, Korzonek-Szlacheta I, Wielkoszynski T, Zurawinski W, Sosada K (2012) The influence of fatty acids on theophylline binding to human serum albumin: comparative fluorescence study. Spectrochim Acta A 89:270–275

    Article  CAS  Google Scholar 

  17. Carter DC, Ho JX (1994) Structure of albumin. Adv Protein Chem 45:153–203

    Article  PubMed  CAS  Google Scholar 

  18. Zhang YZ, Zhang J, Li FF, Xiang X, Ren AQ, Liu Y (2011) Studies on the interaction between benzophenone and bovine serum albumin by spectroscopic methods. Mol Biol Rep 38:2445–2453

    Article  PubMed  CAS  Google Scholar 

  19. Jang J, Liu H, Chen W, Zou G (2009) Binding of mitomycin C to blood proteins: a spectroscopic analysis and molecular docking. J Mol Struct 928:72–77

    Article  CAS  Google Scholar 

  20. Ding F, Liu W, Sun Y, Yang XL, Sun Y, Zhang L (2012) Analysis of conjugation of chloramphenicol and hemoglobin by fluorescence, circular dichroism and molecular modeling. J Mol Struct 1007:81–87

    Article  CAS  Google Scholar 

  21. Liu W, Ding F, Sun Y (2011) Characterization of phenosafranine-hemoglobin interactions in aqueous solution. J Sol Chem 40:231–246

    Article  CAS  Google Scholar 

  22. Jun C, Xue Y, Liu R, Wang M (2011) Study on the toxic interaction of methanol, ethanol and propanol against the bovine hemoglobin (BHb) on molecular level. Spectrochim Acta A 79:1406–1410

    Article  Google Scholar 

  23. Scepanovic M, Abramovic B, Golubovic A, Kler S, Brojcin MG, Mitrovic ZD, Babic B, Matovic B, Popovic ZV (2012) Photocatalytic degradation of metoprolol in water suspension of TiO2 nanopowders prepared using sol–gel route. J Sol–gel Sci Technol 61:390–402

    Article  CAS  Google Scholar 

  24. Dragan F, Bratu I, Borodi G, Toma M, Hernanz A, Simon S, Cristea G, Peshar R (2007) Spectroscopic investigation of β-cyclodextrin-metoprolol tartrate inclusion complexes. J Incl Phenom Macro 59:125–130

    Article  CAS  Google Scholar 

  25. Gowda KV, Mandal U, Selvan PS, Solomon WDS, Ghosh A, Sarkar AK, Agarwal S, Rao TN, Pal TK (2007) Liquid chromatography tandem mass spectrometry method for simultaneous determination of metoprolol tartrate and ramipril in human plasma. J Chromatogr B 858:13–21

    Article  CAS  Google Scholar 

  26. Gholivand MB, Azadbakht A, Pashabadi A (2011) An electrochemical sensor based on carbon nanotube bimetallic Au-Pt inorganic-organic nanofiber hybrid nanocomposite electrode applied for detection of guaifenesin. Electroanalysis 23:2771–2779

    Article  CAS  Google Scholar 

  27. Tapsoba I, Belgaied JE, Boujlel K (2005) Voltammetric assay of guaifenesin in pharmaceutical formulation. J Pharmaceut Biomed 38:162–165

    Article  CAS  Google Scholar 

  28. Hatami M, Farhadi K, Abdollahpour A (2011) Using dispersive liquid-liquid microextraction and liquid chromatography for determination of guaifenesin enantiomers in human urine. J Sep Sci 34:2933–2939

    Article  PubMed  CAS  Google Scholar 

  29. Yue Y, Zhang Y, Li Y, Zhu J, Qin J, Chen X (2008) Interaction of nobiletin with human serum albumin studied using optical spectroscopy and molecular modeling methods. J Lumin 128:513–520

    Article  CAS  Google Scholar 

  30. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  31. Bogdan M, Pirnau A, Floare C, Bugeac C (2008) Binding interaction of indomethacin with human serum albumin. J Pharmaceut Biomed 47:981–984

    Article  CAS  Google Scholar 

  32. Wang YQ, Zhang HM, Zhang GC (2006) Studies of the interaction between palmatine hydrochloride and human serum albumin by fluorescence quenching method. J Pharmaceut Biomed 41:1041–1046

    Article  CAS  Google Scholar 

  33. Bi S, Song D, Kan Y, Xu D, Tian Y, Zhou X, Zhang H (2005) Spectroscopic characterization of effective components antraquinones in Chinese medicinal herbs binding with serum albumins. Spectrochim Acta A 62:203–212

    Article  Google Scholar 

  34. Pinto MC, Duque AL, Macias P (2011) Fluorescence quenching study on the interaction between quercetin and lipoxygenase. J Fluoresc 21:1311–1318

    Article  CAS  Google Scholar 

  35. Castellan GW (1983) Physical chemistry, 3rd edn. Addison-Wesley Publishing Company, California

    Google Scholar 

  36. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  37. Peters T (1985) Serum albumin. Adv Protein Chem 37:161–245

    Article  PubMed  CAS  Google Scholar 

  38. Lui FC, Yan YH, Zhang QZ, Qu GR, Du J, Yao XJ (2010) A study on the interaction between 5-methyluridine and human serum albumin using fluorescence quenching method and molecular modeling. J Mol Model 16:255–262

    Article  Google Scholar 

  39. Gao H, Lei L, Liu J, Kong Q, Chen X, Hu Z (2004) The study on the interaction between human serum albumin and a new reagent with antitumour activity by spectrophotometric methods. J Photoch Photobio A 167:213–221

    Article  CAS  Google Scholar 

  40. Chen T, Zhu S, Cao H, Shang Y, Wang M, Jiang G, Shi Y, Lu T (2011) Studies on the interaction of salvianolic acid B with human hemoglobin by multi-spectroscopic technique. Spectrochim Acta A 78:1295–1301

    Article  Google Scholar 

  41. Qu P, Lu H, Ding X, Tao Y, Lu Z (2009) Study on the interaction of 6-thioguanine with bovine serum albumin by spectroscopic techniques. J Mol Struct 920:172–177

    Article  CAS  Google Scholar 

  42. Lu Z, Zhang Y, Liu H, Yuan J, Zheng Z, Zou G (2007) Transport of a cancer chemopreventive polyphenol, resveratrol: interaction with serum albumin and hemoglobin. J Fluoresc 17:580–587

    Article  PubMed  CAS  Google Scholar 

  43. Wang L, Liu R, Chi Z, Yang B, Zhang P, Wang M (2010) Spectroscopic investigation on the toxic interactions of Ni2+ with bovine hemoglobin. Spectrochim Acta A 76:155–160

    Article  Google Scholar 

Download references

Acknowledgments

This paper was produced from project (number: 2010.01.0105.003) supported by the Scientific Research Projects Coordination Unit of Akdeniz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Duman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duman, O., Tunç, S. & Kancı Bozoğlan, B. Characterization of the Binding of Metoprolol Tartrate and Guaifenesin Drugs to Human Serum Albumin and Human Hemoglobin Proteins by Fluorescence and Circular Dichroism Spectroscopy. J Fluoresc 23, 659–669 (2013). https://doi.org/10.1007/s10895-013-1177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1177-y

Keywords

Navigation