Skip to main content
Log in

A Novel Homogeneous Time-Resolved Fluoroimmunoassay for Carcinoembryonic Antigen Based on Water-Soluble Quantum Dots

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Quantum dots are not widely used in clinical diagnosis. However, the homogeneous time-resolved fluorescence assay possesses many advantages over current methods for the detection of carcinoembryonic antigen (CEA), a primary marker for many cancers and diseases. Therefore, a novel luminescent terbium chelates- (LTCs) and quantum dots-based homogeneous time-resolved fluorescence assay was developed to detect CEA. Glutathione-capped quantum dots (QDs) were prepared from oil-soluble QDs with a 565 nm emission peak. Conjugates (QDs-6 F11) were prepared with QDs and anti-CEA monoclonal antibody. LTCs were prepared and conjugates (LTCs-S001) were prepared with another anti-CEA monoclonal antibody. The fluorescence lifetime of QDs was optimized for sequential analysis. The Förster distance (R0) was calculated as 61.9 Å based on the overlap of the spectra of QDs-6 F11 and LTCs-S001. Using a double-antibody sandwich approach, the above antibody conjugates were used as energy acceptor and donor, respectively. The signals from QDs were collected in time-resolved mode and analyzed for the detection of CEA. The results show that the QDs were suitable for time-resolved fluoroassays. The spatial distance of the donor-acceptor pair was calculated to be 61.9 Å. The signals from QDs were proportional to CEA concentration. The standard curve was LogY = 2.75566 + 0.94457 LogX (R = 0.998) using the fluorescence counts (Y) of QDs and the concentrations of CEA (X). The calculated sensitivity was 0.4 ng/mL. The results indicate that water-soluble QDs are suitable for the homogenous immunoassay. This work has expanded future applications of QDs in homogeneous clinical bioassays. Furthermore, a QDs-based homogeneous multiplex immunoassay will be investigated as a biomarker for infectious diseases in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

6 F11:

Anti-CEA monoclonal antibody

AFP:

Alpha-fetoprotein

BS3:

Bis(sulfosuccinimidyl) suberate sodium salt

CEA:

Carcinoembryonic antigen

cs124:

7-amino-4-methyl-2(1H)-quinolinone

DMSO:

Anhydrous dimethyl sulfoxide

DTPA:

Diethylene triamine pentacetic acid

DTPAa:

Diethylenetriaminepentaacetic acid dianhydride

EDA:

Ethylenediamine

EDAC:

(N-(3-dimethyllaminopropyl) carbodiimide hydrochloride

EDTA:

Ethylenediaminetetraacetic acid

FRET:

Förster resonance energy transfer

FWHM:

Full-width at half maximum

GSH:

Glutathione reduced

HTRFAs:

Homogeneous time-resolved fluoroassays

LTCs:

Luminescent terbium chelates

McAb:

Monoclonal antibody

MES:

2-[N-morpholino]ethanesulfonic acid

oQDs:

Oil-soluble quantum dots

PBS:

Phosphate buffered saline

QDs:

Quantum dots

QY:

Quantum yield

S001:

Anti-CEA monoclonal antibody

SD:

Standard deviation

sulfo-NHS:

N-hydroxysulfosuccinimide sodium salt

TOPO:

Tri-n-octylphosphine oxide

TR-FRET:

Time-resolved Förster resonance transfer

Tris:

Tris(hydroxymethyl)aminomethane

wQDs:

Water-soluble quantum dots

References

  1. Gold P, Freedman SO (1965) Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med 121:439–462

    Article  PubMed  CAS  Google Scholar 

  2. Gold P, Freedman SO (1965) Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122(3):467–481

    Article  PubMed  CAS  Google Scholar 

  3. Tsai HL, Chang YT, Chu KS, Chen CF, Yeh YS, Ma CJ, Wu DC, Kuo CH, Chan HM, Sheen MC, Wang JY (2008) Carcinoembryonic antigen in monitoring of response to cetuximab plus FOLFIRI or FOLFOX-4 in patients with metastatic colorectal cancer. Int J Biol Markers 23(4):244–248

    PubMed  CAS  Google Scholar 

  4. Duxbury MS, Ito H, Benoit E, Waseem T, Ashley SW, Whang EE (2004) A novel role for carcinoembryonic antigen-related cell adhesion molecule 6 as a determinant of gemcitabine chemoresistance in pancreatic adenocarcinoma cells. Cancer Res 64(11):3987–3993. doi:10.1158/0008-5472.CAN-04-0424

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka T, Huang J, Hirai S, Kuroki M, Watanabe N, Tomihara K, Kato K, Hamada H (2006) Carcinoembryonic antigen-targeted selective gene therapy for gastric cancer through FZ33 fiber-modified adenovirus vectors. Clin Cancer Res 12(12):3803–3813. doi:10.1158/1078-0432.CCR-06-0024

    Article  PubMed  CAS  Google Scholar 

  6. Yoon SM, Shin KH, Kim JY, Seo SS, Park SY, Kang S, Cho KH (2007) The clinical values of squamous cell carcinoma antigen and carcinoembryonic antigen in patients with cervical cancer treated with concurrent chemoradiotherapy. Int J Gynecol Cancer 17(4):872–878. doi:10.1111/j.1525-1438.2007.00878.x

    Article  PubMed  CAS  Google Scholar 

  7. Chu TM, Reynoso G, Hansen HJ (1972) Demonstration of carcinoembryonic antigen in normal human plasma. Nature 238(5360):152–153

    Article  PubMed  CAS  Google Scholar 

  8. Withofs M, Offner F, de Paepe P, Praet M (2000) Carcinoembryonic antigen elevation in agnogenic myeloid metaplasia. Br J Haematol 110(3):743–744

    Article  PubMed  CAS  Google Scholar 

  9. Kodera Y, Isobe K, Yamauchi M, Satta T, Hasegawa T, Oikawa S, Kondoh K, Akiyama S, Itoh K, Nakashima I et al (1993) Expression of carcinoembryonic antigen (CEA) and nonspecific crossreacting antigen (NCA) in gastrointestinal cancer; the correlation with degree of differentiation. Br J Cancer 68(1):130–136

    Article  PubMed  CAS  Google Scholar 

  10. Shousha S, Lyssiotis T, Godfrey VM, Scheuer PJ (1979) Carcinoembryonic antigen in breast-cancer tissue: a useful prognostic indicator. Br Med J 1(6166):777–779

    Article  PubMed  CAS  Google Scholar 

  11. Ishiguro F, Fukui T, Mori S, Katayama T, Sakakura N, Hatooka S, Mitsudomi T (2010) Serum carcinoembryonic antigen level as a surrogate marker for the evaluation of tumor response to chemotherapy in nonsmall cell lung cancer. Ann Thorac Cardiovasc Surg 16(4):242–247

    PubMed  Google Scholar 

  12. Hsu WH, Huang CS, Hsu HS, Huang WJ, Lee HC, Huang BS, Huang MH (2007) Preoperative serum carcinoembryonic antigen level is a prognostic factor in women with early non-small-cell lung cancer. Ann Thorac Surg 83(2):419–424. doi:10.1016/j.athoracsur.2006.07.079

    Article  PubMed  Google Scholar 

  13. de Diego A, Compte L, Sanchis J, Enguidanos MJ, Marco V (1991) Usefulness of carcinoembryonic antigen determination in bronchoalveolar lavage fluid. A comparative study among patients with peripheral lung cancer, pneumonia, and healthy individuals. Chest 100(4):1060–1063

    Article  PubMed  Google Scholar 

  14. van Nagell JR Jr, Donaldson ES, Wood EG, Goldenberg DM (1978) The clinical significance of carcinoembryonic antigen in the plasma and tumors of patients with gynecologic malignancies. Cancer 42(3 Suppl):1527–1532

    Article  PubMed  Google Scholar 

  15. Shibata S, Raubitschek A, Leong L, Koczywas M, Williams L, Zhan J, Wong JY (2009) A phase I study of a combination of yttrium-90-labeled anti-carcinoembryonic antigen (CEA) antibody and gemcitabine in patients with CEA-producing advanced malignancies. Clin Cancer Res 15(8):2935–2941. doi:10.1158/1078-0432.CCR-08-2213

    Article  PubMed  CAS  Google Scholar 

  16. Maziak W (2008) Carcinoembryonic antigen (CEA) levels in hookah smokers, cigarette smokers and non-smokers–a comment. J Pak Med Assoc 58(3):155

    PubMed  Google Scholar 

  17. Stevens DP, Mackay IR (1973) Increased carcinoembryonic antigen in heavy cigarette smokers. Lancet 2(7840):1238–1239

    Article  PubMed  CAS  Google Scholar 

  18. Urva SR, Yang VC, Balthasar JP (2009) Development and validation of an enzyme linked immunosorbent assay for the quantification of carcinoembryonic antigen in mouse plasma. J Immunoass Immunochem 30(4):418–427. doi:10.1080/15321810903188227

    Article  CAS  Google Scholar 

  19. Franchimont P, Debruche ML, Zangerlee PF, Proyard J (1973) Radioimmunoassay of the carcinoembryonic antigen. Ann Immunol (Paris) 124(4):619–630

    CAS  Google Scholar 

  20. Tsaltas G, Ford CH, Gallant M (1992) Demonstration of monoclonal anti-carcinoembryonic antigen (CEA) antibody internalization by electron microscopy, western blotting and radioimmunoassay. Anticancer Res 12(6B):2133–2142

    PubMed  CAS  Google Scholar 

  21. Hou JY, Liu TC, Lin GF, Li ZX, Zou LP, Li M, Wu YS (2012) Development of an immunomagnetic bead-based time-resolved fluorescence immunoassay for rapid determination of levels of carcinoembryonic antigen in human serum. Anal Chim Acta 734(93):93–98. doi:10.1016/j.aca.2012.04.044

    Article  PubMed  CAS  Google Scholar 

  22. Stockley RA, Shaw J, Whitfield AG, Whitehead TP, Clarke CA, Burnett D (1986) Effect of cigarette smoking, pulmonary inflammation, and lung disease on concentrations of carcinoembryonic antigen in serum and secretions. Thorax 41(1):17–24

    Article  PubMed  CAS  Google Scholar 

  23. Sajid KM, Chaouachi K, Mahmood R (2008) Hookah smoking and cancer: carcinoembryonic antigen (CEA) levels in exclusive/ever hookah smokers. Harm Reduct J 5:19. doi:10.1186/1477-7517-5-19

    Article  PubMed  Google Scholar 

  24. Dungchai W, Siangproh W, Lin JM, Chailapakul O, Lin S, Ying X (2007) Development of a sensitive micro-magnetic chemiluminescence enzyme immunoassay for the determination of carcinoembryonic antigen. Anal Bioanal Chem 387(6):1965–1971. doi:10.1007/s00216-006-0899-y

    Article  PubMed  CAS  Google Scholar 

  25. Yang X, Guo Y, Wang A (2010) Luminol/antibody labeled gold nanoparticles for chemiluminescence immunoassay of carcinoembryonic antigen. Anal Chim Acta 666(1–2):91–96. doi:10.1016/j.aca.2010.03.059

    Article  PubMed  CAS  Google Scholar 

  26. Matsushita H, Xu J, Kuroki M, Kondo A, Inoue E, Teramura Y, Nozawa M, Senba T, Yamamoto T, Matsuoka Y (1996) Establishment and evaluation of a new chemiluminescent enzyme immunoassay for carcinoembryonic antigen adapted to the fully automated ACCESS system. Eur J Clin Chem Clin Biochem 34(10):829–835

    PubMed  CAS  Google Scholar 

  27. Haggart R, Thorpe GH, Moseley SB, Kricka LJ, Whitehead TP (1986) An enhanced chemiluminescent enzyme immunoassay for serum carcinoembryonic antigen based on a modification of a commercial kit. J Biolumin Chemilumin 1(1):29–34. doi:10.1002/bio.1170010106

    Article  PubMed  CAS  Google Scholar 

  28. Kricka LJ (1994) Selected strategies for improving sensitivity and reliability of immunoassays. Clin Chem 40(3):347–357

    PubMed  CAS  Google Scholar 

  29. Dickson EF, Pollak A, Diamandis EP (1995) Ultrasensitive bioanalytical assays using time-resolved fluorescence detection. Pharmacol Ther 66(2):207–235

    Article  PubMed  CAS  Google Scholar 

  30. Blomberg KR, Mukkala VM, Hakala HH, Makinen PH, Suonpaa MU, Hemmila IA (2011) A dissociative fluorescence enhancement technique for one-step time-resolved immunoassays. Anal Bioanal Chem 399(4):1677–1682. doi:10.1007/s00216-010-4485-y

    Article  PubMed  CAS  Google Scholar 

  31. Mathis G, Socquet F, Viguier M, Darbouret B (1997) Homogeneous immunoassays using rare earth cryptates and time resolved fluorescence: principles and specific advantages for tumor markers. Anticancer Res 17(4B):3011–3014

    PubMed  CAS  Google Scholar 

  32. Selvin PR, Hearst JE (1994) Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc Natl Acad Sci U S A 91(21):10024–10028

    Article  PubMed  CAS  Google Scholar 

  33. Li M, Selvin PR (1997) Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: attachment to DNA and energy transfer measurements. Bioconjug Chem 8(2):127–132. doi:10.1021/bc960085m

    Article  PubMed  CAS  Google Scholar 

  34. Leyris JP, Roux T, Trinquet E, Verdie P, Fehrentz JA, Oueslati N, Douzon S, Bourrier E, Lamarque L, Gagne D, Galleyrand JC, M'Kadmi C, Martinez J, Mary S, Baneres JL, Marie J (2011) Homogeneous time-resolved fluorescence-based assay to screen for ligands targeting the growth hormone secretagogue receptor type 1a. Anal Biochem 408(2):253–262. doi:10.1016/j.ab.2010.09.030

    Article  PubMed  CAS  Google Scholar 

  35. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  PubMed  CAS  Google Scholar 

  36. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  PubMed  CAS  Google Scholar 

  37. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105(37):8861–8871. doi:10.1021/jp0105488

    Article  CAS  Google Scholar 

  38. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46

    Article  PubMed  CAS  Google Scholar 

  39. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19(7):631–635. doi:10.1038/9022890228

    Article  PubMed  CAS  Google Scholar 

  40. Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao W, Prasad PN (2009) Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5(11):1302–1310. doi:10.1002/smll.200801555

    Article  PubMed  CAS  Google Scholar 

  41. Algarra M, Campos BB, Miranda MS, da Silva JC (2011) CdSe quantum dots capped PAMAM dendrimer nanocomposites for sensing nitroaromatic compounds. Talanta 83(5):1335–1340. doi:10.1016/j.talanta.2010.10.056

    Article  PubMed  CAS  Google Scholar 

  42. Charbonniere LJ, Hildebrandt N, Ziessel RF, Lohmannsroben HG (2006) Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy. J Am Chem Soc 128(39):12800–12809. doi:10.1021/ja062693a

    Article  PubMed  CAS  Google Scholar 

  43. Azzazy HM, Mansour MM, Kazmierczak SC (2006) Nanodiagnostics: a new frontier for clinical laboratory medicine. Clin Chem 52(7):1238–1246. doi:10.1373/clinchem.2006.066654

    Article  PubMed  CAS  Google Scholar 

  44. Wang HQ, Huang ZL, Liu TC, Wang JH, Cao YC, Hua XF, Li XQ, Zhao YD (2007) A feasible and quantitative encoding method for microbeads with multicolor quantum dots. J Fluoresc 17(2):133–138. doi:10.1007/s10895-007-0157-5

    Article  PubMed  Google Scholar 

  45. Morgner F, Stufler S, Geissler D, Medintz IL, Algar WR, Susumu K, Stewart MH, Blanco-Canosa JB, Dawson PE, Hildebrandt N (2011) Terbium to quantum Dot FRET bioconjugates for clinical diagnostics: influence of human plasma on optical and assembly properties. Sensors (Basel) 11(10):9667–9684. doi:10.3390/s111009667

    Article  CAS  Google Scholar 

  46. Charbonnière LJ, Hildebrandt N (2008) Lanthanide complexes and quantum dots: a bright wedding for resonance energy transfer. European Jounal of Inorganic Chmistry 2008(21):3241–3251. doi:10.1002/ejic.200800332

    Article  Google Scholar 

  47. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860. doi:10.1021/cm034081k

    Article  CAS  Google Scholar 

  48. Liu TC, Huang ZL, Wang HQ, Wang JH, Li XQ, Zhao YD, Luo QM (2006) Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe. Anal Chim Acta 559(1):120–123. doi:10.1016/j.aca.2005.11.053

    Article  CAS  Google Scholar 

  49. Freeman R, Liu X, Willner I (2011) Amplified multiplexed analysis of DNA by the exonuclease III-catalyzed regeneration of the target DNA in the presence of functionalized semiconductor quantum dots. Nano Lett 11(10):4456–4461. doi:10.1021/nl202761g

    Article  PubMed  CAS  Google Scholar 

  50. Dong ZN, Wu YS, Wang Z, He A, Li M, Chen M, Du H, Ma Q, Liu T (2012) Effect of temperature on the photoproperties of luminescent terbium sensors for homogeneous bioassays. Luminescence. doi:10.1002/bio.2355

  51. Kubinm RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Luminescence 27:455–462

    Article  Google Scholar 

  52. Hemmilä IA, Mikola HJ (1990) New complexing agents for labeling of proteins with metals. Acta Radiol Suppl 374:53–55

    PubMed  Google Scholar 

  53. Hemmilä I, Mukkala V-M, Takalo H (1997) Development of luminescent lanthanide chelate labels for diagnostic assays. J Alloys Comp 249(1–2):158–162. doi:10.1016/S0925-8388(96)02834-4

    Article  Google Scholar 

  54. Hemmilä I, Dakubu S, Mukkala V-M, Siitari H, Lövgren T (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137(2):335–343

    Article  PubMed  Google Scholar 

  55. Wang J, Jiang P, Han Z, Qiu L, Wang C, Zheng B, Xia J (2012) Fast self-assembly kinetics of quantum dots and a dendrimeric peptide ligand. Langmuir 28(21):7962–7966. doi:10.1021/la301227r

    Article  PubMed  CAS  Google Scholar 

  56. Hildebrandt N, Geissler D (2012) Semiconductor quantum dots as FRET acceptors for multiplexed diagnostics and molecular ruler application. Adv Exp Med Biol 733:75–86. doi:10.1007/978-94-007-2555-3_8

    Article  PubMed  CAS  Google Scholar 

  57. Perez-Donoso JM, Monras JP, Bravo D, Aguirre A, Quest AF, Osorio-Roman IO, Aroca RF, Chasteen TG, Vasquez CC (2012) Biomimetic, mild chemical synthesis of CdTe-GSH quantum dots with improved biocompatibility. PLoS One 7(1):e30741. doi:10.1371/journal.pone.0030741

    Article  PubMed  CAS  Google Scholar 

  58. Schulman SG (1977) Fluorescence and phosphorescence spectroscopy: physicochemical principles and practice. Pergamon, Oxford

    Google Scholar 

  59. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim; Chichester

    Google Scholar 

  60. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York; London

    Book  Google Scholar 

  61. Morgner F, Geissler D, Stufler S, Butlin NG, Lohmannsroben HG, Hildebrandt N (2010) A quantum-dot-based molecular ruler for multiplexed optical analysis. Angew Chem Int Ed Engl 49(41):7570–7574. doi:10.1002/anie.201002943

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 30901382, 81271931), the Natural Science Foundation of Guangdong Province (No. S2012010009547), the New Teacher for Doctoral Fund of Ministry of Education of China (Grant No. 20094433120008), Special Funds for College and University Talents by Guangdong Province (2009) and Scientific Research Foundation of Introducing Talents of Southern Medical University(2009).

Competing interests

None.

Funding

The National Natural Science Foundation of China (Grant No. 30901382, 81271931), the New Teacher for Doctoral Fund of Ministry of Education of China (Grant No. 20094433120008), the Natural Science Foundation of Guangdong Province (No. S2012010009547), Special Funds for College and University Talents by Guangdong Province (2009), and the Scientific Research Foundation of Introducing Talents of Southern Medical University(2009).

Ethical approval

The Ethical Committee of Science and Technology Department of Southern Medical University approved this study (REC number: 20121058B).

Guarantor

Tian-Cai Liu.

Contributorship

Mei-Jun Chen, Jing-Yuan Hou and Da Sun contributed to experimental work. Tian-Cai Liu and Ying-Song Wu researched literature and conceived the study. Mei-Jun Chen and Zhi-Qi Ren were involved in protocol development, gaining ethical approval, and data analysis. Mei-Jun Chen wrote the first draft of the manuscript. All authors reviewed and edited the manuscript and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Cai Liu.

Additional information

Zhen-Hua Chen and Ying-Song Wu contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ZH., Wu, YS., Chen, MJ. et al. A Novel Homogeneous Time-Resolved Fluoroimmunoassay for Carcinoembryonic Antigen Based on Water-Soluble Quantum Dots. J Fluoresc 23, 649–657 (2013). https://doi.org/10.1007/s10895-013-1175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1175-0

Keywords

Navigation