Skip to main content
Log in

Spectrofluorimetric Determination of Fluoroquinolones in Honey with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone in the Presence of β-cyclodextrin

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A simple and sensitive spectrofluorimetric method was developed for the determination of four fluoroquinolone antibacterials namely norfloxacin (NOR), ofloxacin (OFL), ciprofloxacin (CIP) and gatifloxacin (GAT) in honey through charge transfer (CT) complex formation with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and then the inclusion complexes of FQs-DDQ with β-cyclodextrin (β-CD) were formed, which resulted in drastic fluorescence enhancement. The effect of several parameters including the concentration of reactants, reaction temperature, time and ultrasonic treatment on the efficiency of the proposed method involving CT reaction and inclusion interaction was systematically investigated. Under the optimum conditions, the limits of detection (LODs) for four FQs in honey varied from 11.6 to 15.4 μg/kg (signal-to-noise ratio (S/N) = 3). The intra- and interday relative standard deviations (RSDs) were 1.6–4.0 % (n = 5) for four FQs. The calibration graph was linear from 42.8 to 1346.8 μg/kg with correlation coefficients not less than 0.9905. The recoveries of four FQs at three different spiked concentrations in honey samples ranged from 80.9 % to 92.8 %. The results indicated that the method was successfully applied for analyzing FQs in honey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeon CW, Khan MA, Lee SH, Karim MM et al (2008) Optical flow-through sensor for the determination of norfloxacin based on emission of KMnO4-Na2SO3-Tb3+ System. J Fluoresc 18:843–851. doi:10.1007/s10895-008-0313-6

    Article  PubMed  CAS  Google Scholar 

  2. Chen LG, Zhang XP, Xu Y, Du XB et al (2010) Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 662:31–38

    Article  PubMed  CAS  Google Scholar 

  3. Payán MR, López MÁB, Fernández-Torres R, González JAO, Mochón MC (2011) Hollow fiber-based liquid phase microextraction (HF-LPME) as a new approach for the HPLC determination of fluoroquinolones in biological and environmental matrices. J Pharm Biomed Anal 55:332–341

    Article  Google Scholar 

  4. Lombardo-Agüí M, García-Campaña AM, Gámiz-Gracia L, Blanco CC (2010) Laser induced fluorescence coupled to capillary electrophoresis for the determination of fluoroquinolones in foods of animal origin using molecularly imprinted polymers. J Chromatogr A 1217:2237–2242

    Article  PubMed  Google Scholar 

  5. Rodriguez E, Moreno-Bondi MC, Marazuela MD (2011) Multiresidue determination of fluoroquinolone antimicrobials in baby foods by liquid chromatography. Food Chem 127:1354–1360

    Article  CAS  Google Scholar 

  6. Gao Q, Zheng HB, Luo D, Ding J, Feng YQ (2012) Facile synthesis of magnetic one-dimensional polyaniline and its application in magnetic solid phase extraction for fluoroquinolones in honey samples. Anal Chim Acta 720:57–62

    Article  PubMed  CAS  Google Scholar 

  7. Granja RHMM, Montes Niño AM, Zucchetti RAM et al (2009) Determination of streptomycin residues in honey by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 637:64–67

    Article  PubMed  CAS  Google Scholar 

  8. Bargańska Ż, Ślebioda M, Namieśnik J (2011) Determination of antibiotic residues in honey. Trends Anal Chem 30:1035–1041

    Article  Google Scholar 

  9. Wutz K, Niessner R, Seidel M (2011) Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalytechip immunoassays. Microchim Acta 173:1–9. doi:10.1007/s00604-011-0548-9

    Article  CAS  Google Scholar 

  10. Kaczmarek M, Idzikowska A, Lis S (2008) Europium-sensitized chemiluminescence of system tetracycline-H2O2-Fe(II)/(III) and its application to the determination of tetracycline. J Fluoresc 18:1193–1197. doi:10.1007/s10895-008-0371-9

    Article  PubMed  CAS  Google Scholar 

  11. Walorczyk S, Gnusowski B (2009) Development and validation of a multi-residue method for the determination of pesticides in honeybees using acetonitrile-based extraction and gas chromatography-tandem quadrupole mass spectrometry. J Chromatogr A 1216:6522–6531

    Article  PubMed  CAS  Google Scholar 

  12. Pohl P, Sergiel I (2010) Direct determination of the total concentrations of copper, iron and manganese and their fractionation forms in freshly ripened honeys by means of flame atomic absorption spectrometry. Microchim Acta 168:9–15. doi:10.1007/s00604-009-0266-8

    Article  CAS  Google Scholar 

  13. Askal HF, Refaat IH, Darwish IA, Marzouq MA (2008) A selective spectrophotometric method for determination of rosoxacin antibiotic using sodium nitroprusside as a chromogenic reagent. Spectrochim Acta A 69:1287–1291

    Article  Google Scholar 

  14. Darwish IA, Sultan MA, Al-Arfaj HA (2009) Novel selective kinetic spectrophotometric method for determination of norfloxacin in its pharmaceutical formulations. Talanta 78:1383–1388

    Article  PubMed  CAS  Google Scholar 

  15. Vílchez JL, Taoufiki J, Ballesteros O, Navalón A (2005) Micelle-enhanced spectrofluorimetric method for the determination of antibacterial trovafloxacin in human urine and serum. Microchim Acta 150:247–252. doi:10.1007/s00604-005-0369-9

    Article  Google Scholar 

  16. Ulu ST (2009) Highly sensitive spectrofluorimetric determination of lomefloxacin in spiked human plasma, urine and pharmaceutical preparations. Eur J Med Chem 44:3402–3405

    Article  PubMed  CAS  Google Scholar 

  17. Tekkeli SEK, Önal A (2011) Spectrofluorimetric methods for the determination of gemifloxacin in tablets and spiked plasma samples. J Fluoresc 21:1001–1007. doi:10.1007/s10895-010-0759-1

    Article  Google Scholar 

  18. Simonovska B, Andrenšek S, Vovk I, Prošek M (1999) High-performance thin-layer chromatography method for monitoring norfloxacin residues on pharmaceutical equipment surfaces. J Chromatogr A 862:209–215

    Article  PubMed  CAS  Google Scholar 

  19. Schneider MJ, Darwish AM, Freeman DW (2007) Simultaneous multiresidue determination of tetracyclines and fluoroquinolones in catfish muscle using high performance liquid chromatography with fluorescence detection. Anal Chim Acta 586:269–274

    Article  PubMed  CAS  Google Scholar 

  20. Jiménez V, Companyó R, Guiteras J (2011) Validation of a method for the analysis of nine quinolones in eggs by pressurized liquid extraction and liquid chromatography with fluorescence detection. Talanta 85:596–606

    Article  PubMed  Google Scholar 

  21. Rodríguez E, Navarro-Villoslada F, Benito-Peña E et al (2011) Multiresidue determination of ultratrace levels of fluoroquinolone antimicrobials in drinking and aquaculture water samples by automated online molecularly imprinted solid phase extraction and liquid chromatography. Anal Chem 83:2046–2055

    Article  PubMed  Google Scholar 

  22. Khan M, Naveen Kumar Reddy C, Ravindra G et al (2012) Development and validation of a stability indicating HPLC method for simultaneous determination of four novel fluoroquinolone dimers as potential antibacterial agents. J Pharm Biomed Anal 59:162–166

    Article  PubMed  CAS  Google Scholar 

  23. Ocaña JA, Barragán FJ, Callejón M, De la Rosa F (2004) Application of lanthanide-sensitised chemiluminescence to the determination of levofloxacin, moxifloxacin and trovafloxacin in tablets. Microchim Acta 144:207–213. doi:10.1007/s00604-003-0101-6

    Article  Google Scholar 

  24. Francis PS, Adcock JL (2005) Chemiluminescence methods for the determination of ofloxacin. Anal Chim Acta 541:3–12

    Article  CAS  Google Scholar 

  25. Sun HW, Chen PY, Wang F, Wen HF (2009) Investigation on enhanced chemiluminescence reaction systems with bis(hydrogenperiodato) argentate(III) complex anion for fluoroquinolones synthetic antibiotics. Talanta 79:134–140

    Article  PubMed  CAS  Google Scholar 

  26. Yu XJ, Jiang ZH, Wang QJ, Guo YS (2010) Silver nanoparticle-based chemiluminescence enhancement for the determination of norfloxacin. Microchim Acta 171:17–22. doi:10.1007/s00604-010-0401-6

    Article  CAS  Google Scholar 

  27. Ramadan AA, Mandil H (2010) Determination of gatifloxacin in pure form and pharmaceutical formulations by differential pulse polarographic analysis. Anal Biochem 404:1–7

    Article  PubMed  CAS  Google Scholar 

  28. Fotouhi L, Alahyari M (2010) Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloids Surf B: Biointerfaces 81:110–114

    Article  PubMed  CAS  Google Scholar 

  29. Goyal RN, Rana ARS, Chasta H (2012) Electrochemical sensor for the sensitive determination of norfloxacin in human urine and pharmaceuticals. Bioelectrochem 83:46–51

    Article  Google Scholar 

  30. Tsekenis G, Garifallou GZ, Davis F, Millner PA, Pinacho DG et al (2008) Detection of fluoroquinolone antibiotics in milk via a labeless immunoassay based upon an alternating current impedance protocol. Anal Chem 80:9233–9239

    Article  PubMed  CAS  Google Scholar 

  31. Mostafa S, El-Sadek M, Alla EA (2002) Spectrophotometric determination of ciprofloxacin, enrofloxacin and pefloxacin through charge transfer complex formation. J Pharm Biomed Anal 27:133–142

    Article  PubMed  CAS  Google Scholar 

  32. Askal HF (1997) Spectrophotometric study of the charge transfer complexes of some pharmaceutical butyrophenones. Talanta 44:1749–1755

    Article  PubMed  CAS  Google Scholar 

  33. Du LM, Yang YQ, Wang QM (2004) Spectrofluorometric determination of certain quinolone through charge transfer complex formation. Anal Chim Acta 516:237–243

    Article  CAS  Google Scholar 

  34. Li WY, Chen XF, Xuan CS (2009) Study of fluorescence characteristics of the charge-transfer reaction of quinolone agents with bromanil. Spectrochim Acta A 71:1769–1775

    Article  Google Scholar 

  35. More VR, Mote US, Patil SR, Kolekar GB (2009) Spectroscopic studies on the interaction between norfloxacin and p-amino benzoic acid: analytical application on determination of norfloxacin. Spectrochim Acta A 74:771–775

    Article  CAS  Google Scholar 

  36. Gong AQ, Zhu XS, Hu YY, Yu SH (2007) A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumine and its analytical application. Talanta 73:668–673

    Article  PubMed  CAS  Google Scholar 

  37. Zhang LW, Wang K, Zhang XX (2007) Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method. Anal Chim Acta 603:101–110

    Article  PubMed  CAS  Google Scholar 

  38. Ni YN, Su SJ, Kokot S (2010) Spectrometric studies on the interaction of fluoroquinolones and bovine serum albumin. Spectrochim Acta A 75:547–552

    Article  Google Scholar 

  39. Karim MM, Lee SH (2008) Determination of enoxacin using Tb composite nanoparticles sensitized luminescence method. J Fluoresc 18:827–833. doi:10.1007/s10895-008-0311-8

    Article  PubMed  CAS  Google Scholar 

  40. Kamruzzaman M, Alam AM, Lee SH, Suh YS et al (2011) Method for determination of fluoroquinolones based on the plasmonic interaction between their fluorescent terbium complexes and silver nanoparticles. Microchim Acta 174:353–360. doi:10.1007/s00604-011-0633-0

    Article  CAS  Google Scholar 

  41. Kaur K, Saini S, Singh B, Malik AK (2012) Highly sensitive synchronous fluorescence measurement of danofloxacin in pharmaceutical and milk samples using aluminium (III) enhanced fluorescence. J Fluoresc. doi:10.1007/s10895-012-1079-4

Download references

Acknowledgments

We gratefully acknowledge the financial support of this research by National Innovation Fund for Small and Medium-sized Enterprises (10C26215305131). Analytical and Testing Center of Kunming University of Science and Technology is also thanked for its help in the analysis of practical samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaling Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Q., Yang, Y. & Liu, M. Spectrofluorimetric Determination of Fluoroquinolones in Honey with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone in the Presence of β-cyclodextrin. J Fluoresc 23, 713–723 (2013). https://doi.org/10.1007/s10895-013-1166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1166-1

Keywords

Navigation