Skip to main content
Log in

Determination of Enoxacin Using Tb Composite Nanoparticles Sensitized Luminescence Method

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In our study, terbium-acetylacetone (Tb-acac) composite nanoparticles have been prepared under vigorous ultrasonic irradiation. The nanoparticles are water soluble, stable and have extremely narrow emission bands and high internal quantum efficiencies. They were used as fluorescence probes in the determination of enoxacin (Enox) based on the fluorescence enhancement of nanoparticles through fluorescence resonance energy transfer (FRET). The influence of buffer solution on the fluorescence intensity was investigated. Under the optimum conditions, the fluorescence intensity of the Tb-acac-Enox system is linearly proportional to the Enox concentration in the Enox concentration range of 2 × 10−7–1 × 10−4 M. The correlation coefficient for the calibration curve was 0.9976. The limit of detection as defined by IUPAC, C LOD = 3S b/m (where S b is the standard deviation of the blank signals and m is the slope of the calibration graph) was found to be 3 × 10−8 M. The relative standard deviation (RSD) for six repeated measurements of 1 × 10−4 M Enox was 1.35%. The method was applied to the determination of Enox in pharmaceutical formulation and recovery results were obtained from urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McEvoy GK (ed) (2000) AHFS drug information. American Society of Health-System Pharmacists, Bethesda, MD

  2. Squella JA, Alvarez-Lueje A, Sturm JC, Nunez-Vergara LJ (1993) Enoxacin: polarographic behavior and its determination in pharmaceutical forms. Anal Lett 26:1943–1957

    CAS  Google Scholar 

  3. Zhang ZQ, Li YF, He XM, Zhang H (1996) Electroanalytical characteristics of enoxacin and their analytical application. Talanta 43:635–641

    Article  CAS  Google Scholar 

  4. Hamel B, Audran M, Costa P, Bressolle F (1998) Reversed-phase high-performance liquid chromatographic determination of enoxacin and 4-oxo-enoxacin in human plasma and prostatic tissue: Application to a pharmacokinetic study. J Chromatogr A 812:369–379

    Article  PubMed  CAS  Google Scholar 

  5. Hernández M, Borrull F, Calull M (2000) Determination of quinolones in plasma samples by capillary electrophoresis using solid-phase extraction. J Chromatogr B 742:255–265

    Article  Google Scholar 

  6. Vyncht GV, Jánosi A, Bordin G, Toussaint B, Rogister GM, De Pauw E, Rodriguez AR (2002) Multiresidue determination of (fluoro)quinolone antibiotics in swine kidney using liquid chromatography–tandem mass spectrometry. J Chromatogr A 952:121–129

    Article  PubMed  Google Scholar 

  7. Süslü İ, Tamer A (2002) Spectrophotometric determination of enoxacin as ion-pairs with bromophenol blue and bromocresol purple in bulk and pharmaceutical dosage form. J Pharm Biomed Anal 29:545–554

    Article  PubMed  Google Scholar 

  8. Vílchez JL, Araujo L, Prieto A, Navalón A (2004) Determination of ciprofloxacin and enoxacin in human serum samples by micellar liquid chromatography. Anal Chim Acta 516:135–140

    Article  Google Scholar 

  9. Espinosa-Mansilla A, de la Peña AM, Gómez DG, Salinas F (2005) HPLC determination of enoxacin, ciprofloxacin, norfloxacin and ofloxacin with photoinduced fluorimetric (PIF) detection and multiemission scanning: Application to urine and serum. J Chromatogr B 822:185–193

    Article  CAS  Google Scholar 

  10. Chen S-I, Ding F, Liu Y, Zhao H-C (2006) Electrochemiluminescence of terbium (III)-two fluoroquinolones-sodium sulfite system in aqueous solution. Spectrochim Acta A 64(1):130–135

    Article  Google Scholar 

  11. Yi L, Zhao H, Chen S, Jin L, Zheng D, Wu Z (2003) Flow-injection analysis of two fluoquinolones by the sensitizing effect of terbium(III) on chemiluminescence of the potassium permanganate–sodium sulfite system. Talanta 61:403–409

    Article  CAS  Google Scholar 

  12. Karim MM, Lee SH, Lee HS, Bae ZU, Choi KH (2006) A batch chemiluminescence determination of enoxacin using a tris-(1, 10-phenanthroline) ruthenium(II)-Cerium(IV) system. J Fluoresc 16(4):535–540

    Article  PubMed  CAS  Google Scholar 

  13. Karim MM, Jeon CW, Lee HS, Alam SM, Lee SH, Choi JH, Jin SO, Das AK (2006) Simultaneous determination of acetylsalicylic acid and caffeine in pharmaceutical formulation by first derivative synchronous fluorimetric method. J Fluoresc 16:713–721

    Article  PubMed  CAS  Google Scholar 

  14. Karim MM, Lee HS, Kim YS, Bae HS, Lee SH (2006) Analysis of salicylic acid based on the fluorescence enhancement of the arsenic (III)-salicylic acid system. Anal Chim Acta 576:136–139

    Article  PubMed  CAS  Google Scholar 

  15. Karim MM, Lee SH, Kim YS, Bae HS, Hong SB (2006) Fluorimetric determination of Ce(IV) with ascorbic acid. J Fluoresc 16:17–22

    Article  PubMed  CAS  Google Scholar 

  16. Karim MM, Alam SM, Lee SH (2007) Spectrofluorimetric estimation of norepinephrine using ethylenediamine condensation method. J Fluoresc 17:427–436

    Article  PubMed  CAS  Google Scholar 

  17. Espinosa-Mansilla A, de la Peña AM, Salinas F, Gómez DG (2004) Partial least squares multi component fluorimetric determination of fluoroquinolones in human urine samples. Talanta 62:853–860

    Article  CAS  Google Scholar 

  18. You F, Jin L, Zhao H (1999) Study on fluorescence of the Tb(III)–enoxacin system and the determination of enoxacin. Anal Commun 36:231–233

    Article  Google Scholar 

  19. Wang L, Wang LY, Zhu CQ, Wei XW, Kai XW (2002) Preparation of functionalized nanoparticles of cadmium sulfide as a fluorescence probe. Anal Chim Acta 468:35–41

    Article  CAS  Google Scholar 

  20. Schmidt G, Malwitz MM (2003) Properties of polymer–nanoparticle composites. J Colloid Interface Sci 8(1):103–108

    Article  CAS  Google Scholar 

  21. Bhattacharjee B, Ganguli D, Chaudhuri S (2002) Growth behavior of CdS nanoparticles embedded in polymer and sol-gel silica matrices: Relationship with surface-state related luminescence. J Fluoresc 12(3/4):369–375

    Article  CAS  Google Scholar 

  22. Wang L, Chen H, Wang L, Li L, Xu F, Liu J, Zhu C (2004) Preparation and application of a novel composite nanoparticle as a protein fluorescence. Anal Lett 37(2):213–223

    Article  CAS  Google Scholar 

  23. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100(31):13226–13239

    Article  CAS  Google Scholar 

  24. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  CAS  Google Scholar 

  25. Panigrahi BS (2002) A fluorimetric study of terbium, europium and dysprosium in aqueous solution using pyridine carboxylic acids as ligands. J Alloy Comp 334(1–2):228–231

    Article  CAS  Google Scholar 

  26. Zheng Y, Lin J, Liang Y, Lin Q, Yu Y, Guo C, Wang S, Zhang H (2002) A novel terbium (III) beta-diketonate complex as thin film for optical device application. Mater Lett 54:424–429

    Article  CAS  Google Scholar 

  27. Wang Q-M, Yan B (2004) Novel luminescent molecular-based hybrid organic–inorganic terbium complex covalently bonded materials via sol-gel process. Inorg Chem Commun 7(6):747–750

    Article  CAS  Google Scholar 

  28. Zhang N, Tang S-H, Liu Y (2003) Luminescence behavior of a water soluble calix[4]arene derivative complex with terbium ion(III) in gelation solution. Spectrochim Acta A 59(5):1107–1112

    Article  Google Scholar 

  29. Suslick KS (ed) (1988) Ultrasound: its chemical, physical and biological effects. VCH, Weinheim, Germany

  30. Wang L, Bian G, Dong L, Xia Y, Hong S (2005) Preparation of a novel fluorescence probe of terbium composite nanoparticles and its application in the determination of ascorbic acid. Microchim Acta 150:291–296

    Article  CAS  Google Scholar 

  31. Suslick KS, Hammerton DA, Cline RE (1986) Sonochemical hot spot. J Am Chem Soc 108:5641–5642

    Article  CAS  Google Scholar 

  32. Rieutord A, Vazquez L, Soursac M, Prognon P, Blais J, Bourget Ph, Mahuzier G (1994) Fluoroquinolones as sensitizers of lanthanide fluorescence: application to the liquid chromatographic determination of ciprofloxacin using terbium. Anal Chim Acta 290(1–2):215–225

    Article  CAS  Google Scholar 

  33. Parker CA, Rees WT (1960) Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst 85:587–600

    Article  CAS  Google Scholar 

  34. Richardson FS (1982) Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem Rev 82:541–552

    Article  CAS  Google Scholar 

  35. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New York, p 303

    Google Scholar 

  36. Bian W, Wang Y, Zhu X, Jiang C (2006) Spectrofluorimetric determination of trace amount of coenzyme II using ciprofloxacin–terbium complex as a fluorescent probe. J Lumin 118:186–192

    Article  CAS  Google Scholar 

  37. Hercules DM (1966) Fluorescence and phosphorescence analysis, chap. 2. Interscience, New York

    Google Scholar 

Download references

Acknowledgement

The support of this research by Korea Research Foundation Grant (KRF-2004-005-C00009) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hak Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, M.M., Lee, S.H. Determination of Enoxacin Using Tb Composite Nanoparticles Sensitized Luminescence Method. J Fluoresc 18, 827–833 (2008). https://doi.org/10.1007/s10895-008-0311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0311-8

Keywords

Navigation